Indian J Pharm Close
 

Figure 1: (a) A healthy liver tissue from a rabbit on starch and phenobarbital sodium (group 2). The central vein appears in the middle of the field. (Hematoxylin-Eosin stain, 400X). (b) A liver tissue from a rabbit receiving Nigella sativa and phenobarbital sodium. Portal area, bile duct, and hepatic vein are shown. The field appears clear with no sign of inflammatory cell infiltration (Hematoxylin-Eosin stain, 200X). (c) A liver tissue from a rabbit on starch and phenobarbital sodium then treated with INH (group 1). Hepatic vein is shown in the middle of the field. Moderate lymphocytic infiltration with extension of inflammation and bridging with other portal tracts (Hematoxylin-Eosin stain, 100X). (d) A liver tissue from a rabbit receiving Nigella sativa before phenobarbital sodium and INH treatment (group 3). The central vein and the surrounding area of the liver tissue appear normal (Hematoxylin-Eosin stain, 100X)

Figure 1: (a) A healthy liver tissue from a rabbit on starch and phenobarbital sodium (group 2). The central vein appears in the middle of the field. (Hematoxylin-Eosin stain, 400X). (b) A liver tissue from a rabbit receiving <i>Nigella sativa</i> and phenobarbital sodium. Portal area, bile duct, and hepatic vein are shown. The field appears clear with no sign of inflammatory cell infiltration (Hematoxylin-Eosin stain, 200X). (c) A liver tissue from a rabbit on starch and phenobarbital sodium then treated with INH (group 1). Hepatic vein is shown in the middle of the field. Moderate lymphocytic infiltration with extension of inflammation and bridging with other portal tracts (Hematoxylin-Eosin stain, 100X). (d) A liver tissue from a rabbit receiving <i>Nigella sativa</i> before phenobarbital sodium and INH treatment (group 3). The central vein and the surrounding area of the liver tissue appear normal (Hematoxylin-Eosin stain, 100X)