1 |
A review of nanomaterials from synthetic and natural molecules for prospective breast cancer nanotherapy |
|
|
| Pankaj Kumar, Bharti Mangla, Shamama Javed, Waquar Ahsan, Pankaj Musyuni, Durgaramani Sivadasan, Saad S. Alqahtani, Geeta Aggarwal |
|
| Frontiers in Pharmacology. 2023; 14 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
2 |
Identification and validation of a prognostic risk model based on caveolin family genes for breast cancer |
|
|
| Qiang Tang, Shurui Wang, Ziyang Di, Huimin Li, Kailiang Xu, Xin Hu, Maojun Di |
|
| Frontiers in Cell and Developmental Biology. 2022; 10 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
3 |
Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: A comprehensive review |
|
|
| Ahmed Ismail, Hesham A. El-Mahdy, Ahmed I. Abulsoud, Al-Aliaa M. Sallam, Mahmoud Gomaa Eldeib, Elsayed G.E. Elsakka, Mohamed Bakr Zaki, Ahmed S. Doghish |
|
| International Journal of Biological Macromolecules. 2022; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
4 |
Role of miRNAs in regulating responses to radiotherapy in human breast cancer |
|
|
| Zhi Xiong Chong, Swee Keong Yeap, Wan Yong Ho |
|
| International Journal of Radiation Biology. 2021; 97(3): 289 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
5 |
Exosomal-mediated transfer of OIP5-AS1 enhanced cell chemoresistance to trastuzumab in breast cancer via up-regulating HMGB3 by sponging miR-381-3p |
|
|
| Qiang Yu, Yinmou Li, Shijun Peng, Jing Li, Xianxiong Qin |
|
| Open Medicine. 2021; 16(1): 512 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
6 |
YES1 as a Therapeutic Target for HER2-Positive Breast Cancer after Trastuzumab and Trastuzumab-Emtansine (T-DM1) Resistance Development |
|
|
| Miwa Fujihara, Tadahiko Shien, Kazuhiko Shien, Ken Suzawa, Tatsuaki Takeda, Yidan Zhu, Tomoka Mamori, Yusuke Otani, Ryo Yoshioka, Maya Uno, Yoko Suzuki, Yuko Abe, Minami Hatono, Takahiro Tsukioki, Yuko Takahashi, Mariko Kochi, Takayuki Iwamoto, Naruto Taira, Hiroyoshi Doihara, Shinichi Toyooka |
|
| International Journal of Molecular Sciences. 2021; 22(23): 12809 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
7 |
Immunotherapy for Breast Cancer Treatment |
|
|
| Miganoosh Simonian, Mozhan Haji Ghaffari, Babak Negahdari |
|
| Iranian Biomedical Journal. 2021; 25(3): 140 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
8 |
Experimental Models as Refined Translational Tools for Breast Cancer Research |
|
|
| Eduardo Costa, Tânia Ferreira-Gonçalves, Gonçalo Chasqueira, António S. Cabrita, Isabel V. Figueiredo, Catarina Pinto Reis |
|
| Scientia Pharmaceutica. 2020; 88(3): 32 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
9 |
Breast Cancer Targeted Treatment Strategies: Promising Nanocarrier Approaches |
|
|
| Sivakumar P. Malliappan, Palanivel Kandasamy, Siva Chidambaram, Devanand Venkatasubbu, Sathish K. Perumal, Abimanyu Sugumaran |
|
| Anti-Cancer Agents in Medicinal Chemistry. 2020; 20(11): 1300 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
10 |
Dual cancer targeting using estrogen functionalized chitosan nanoparticles loaded with doxorubicin-estrone conjugate: A quality by design approach |
|
|
| Balak Das Kurmi, Rishi Paliwal, Shivani Rai Paliwal |
|
| International Journal of Biological Macromolecules. 2020; 164: 2881 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
11 |
Transcriptional activation of EGFR by HOXB5 and its role in breast cancer cell invasion |
|
|
| Ji-Yeon Lee, Jie Min Kim, Da Som Jeong, Myoung Hee Kim |
|
| Biochemical and Biophysical Research Communications. 2018; 503(4): 2924 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
12 |
Human Antibody Fusion Proteins/Antibody Drug Conjugates in Breast and Ovarian Cancer |
|
|
| Eden R. Padayachee, Fleury Augustin Nsole Biteghe, Zaria Malindi, Dirk Bauerschlag, Stefan Barth |
|
| Transfusion Medicine and Hemotherapy. 2017; 44(5): 303 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
13 |
Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells |
|
|
| Vaiyapuri Subbarayan Periasamy, Jegan Athinarayanan, Ali A. Alshatwi |
|
| Ultrasonics Sonochemistry. 2016; 31: 449 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
14 |
Novel Adamantanyl-Based Thiadiazolyl Pyrazoles Targeting EGFR in Triple-Negative Breast Cancer |
|
|
| Anusha Sebastian, Vijay Pandey, Chakrabhavi Dhananjaya Mohan, Yi Ting Chia, Shobith Rangappa, Jessin Mathai, C. P. Baburajeev, Shardul Paricharak, Lewis H. Mervin, Krishna C. Bulusu, Julian E. Fuchs, Andreas Bender, Shuhei Yamada, Basappa, Peter E. Lobie, Kanchugarakoppal S. Rangappa |
|
| ACS Omega. 2016; 1(6): 1412 |
|
| [Pubmed] [Google Scholar] [DOI] |
|
15 |
Investigating the association of vascular endothelial growth factor polymorphisms with breast cancer: a Moroccan case–control study |
|
|
| Jalila Rahoui,Abdelilah Laraqui,Yassir Sbitti,Nadia Touil,Azeddine Ibrahimi,Brahim Ghrab,Abderrahman Al Bouzidi,Driss Moussaoui Rahali,Mohamed Dehayni,Mohamed Ichou,Fatima Zaoui,Saad Mrani |
|
| Medical Oncology. 2014; 31(9) |
|
| [Pubmed] [Google Scholar] [DOI] |
|
16 |
Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin ß1 |
|
|
| Yinying Dong,Xiaoying Xie,Zhiming Wang,Chao Hu,Qiongdan Zheng,Yaohui Wang,Rongxin Chen,Tongchun Xue,Jie Chen,Dongmei Gao,Weizhong Wu,Zhenggang Ren,Jiefeng Cui |
|
| Biochemical and Biophysical Research Communications. 2014; |
|
| [Pubmed] [Google Scholar] [DOI] |
|
17 |
IRS1 is highly expressed in localized breast tumors and regulates the sensitivity of breast cancer cells to chemotherapy, while IRS2 is highly expressed in invasive breast tumors |
|
|
| Holly A. Porter,Anthony Perry,Chris Kingsley,Nhan L. Tran,Achsah D. Keegan |
|
| Cancer Letters. 2013; 338(2): 239 |
|
| [Pubmed] [Google Scholar] [DOI] |
|