IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 514 
Small font sizeDefault font sizeIncrease font size
Navigate Here
 »   Next article
 »   Previous article
 »   Table of Contents

Resource Links
 »   Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »   Citation Manager
 »   Access Statistics
 »   Reader Comments
 »   Email Alert *
 »   Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded32    
    Comments [Add]    

Recommend this journal


Year : 2022  |  Volume : 54  |  Issue : 6  |  Page : 431-442

Virtual screening and molecular dynamics simulation study of approved drugs as a binder to the linoleic acid binding site on spike protein of SARS-CoV-2 and double mutant (E484Q and L452R)

1 Department of Pharmacology, PGIMER, Chandigarh, India
2 Department of Biophysics, PGIMER, Chandigarh, India
3 Department of Ophthalmology, GMCH, Chandigarh, India
4 Department of Paediatrics, PGIMER, Chandigarh, India

Correspondence Address:
Bikash Medhi
Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijp.ijp_111_22

Rights and Permissions

INTRODUCTION: Binding of linoleic acid (LA) to the spike trimer stabilizes it in closed conformation hindering its binding to angiotensin-converting enzyme-2, thus decreasing infectivity. In the current study, we tend to repurpose Food and Drug Administration-approved drugs as binder to the LA binding pocket in wild and double mutant spike protein. MATERIALS AND METHODS: Approved drugs from DrugBank database (n = 2456) were prepared using Ligprep module of Schrodinger. Crystal structure of LA bound to spike trimer was retrieved (PDB: 6ZB4) and prepared using protein preparation wizard and grid was generated. A virtual screening was performed. With the help of molecular dynamics (MD) studies interaction profile of screened drugs were further evaluated. The selected hits were further evaluated for binding to the double mutant form of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). RESULTS AND DISCUSSION: Following virtual screening, a total of 26 molecules were shortlisted, which were further evaluated using 1ns MD simulation study. Four ligands showing better root mean square deviation (RMSD), RMSD to LA with interaction profile similar to LA were further evaluated using 100 ns MD simulation studies. A total of 2 hits were identified, which performed better than LA (selexipag and pralatrexate). Both these ligands were also found to bind to LA binding site of the double mutant form (E484Q and L452R); however, the binding affinity of pralatrexate was found to be better. CONCLUSION: We have identified 2 ligands (selexipag and pralatrexate) as possible stable binders to the LA binding site in spike trimer (wild and mutant form). Among them, pralatrexate has shown in vitro activity against SARS-CoV-2, validating our study results.


Print this article     Email this article

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow