IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 1465 
Small font sizeDefault font sizeIncrease font size
Navigate Here
 »   Next article
 »   Previous article
 »   Table of Contents

Resource Links
 »   Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »   Citation Manager
 »   Access Statistics
 »   Reader Comments
 »   Email Alert *
 »   Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded88    
    Comments [Add]    

Recommend this journal


Year : 2021  |  Volume : 53  |  Issue : 5  |  Page : 384-387

Antidiabetic activity of Commiphora mukul and Phyllanthus emblica and Computational analysis for the identification of active principles with dipeptidyl peptidase IV inhibitory activity

1 Department of Pharmacology, MGM Medical College, Navi Mumbai, Maharashtra, India
2 School of Biotechnology and Bioinformatics, DY. Patil Deemed to be University, Navi Mumbai, Maharashtra, India

Correspondence Address:
Dr. Ipseeta Ray Mohanty
Department of Pharmacology, MGM Medical College, Kamothe, Navi Mumbai - 410 209, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijp.IJP_69_19

Rights and Permissions

The medicinal plants may serve as natural alternatives to synthetic antidiabetic medications such as dipeptidyl peptidase-IV (DPP-IV) inhibitors, which are commonly prescribed in clinical practise. The medicinal plants: Commiphora mukul and Phyllanthus emblica have considerable DPP-IV inhibitory efficacy, according to our findings. The present study is an extension of the previous study conducted in our laboratory and was designed to confirm the antidiabetic effects of C. mukul and P. emblica in the streptozotocin diabetes model and elucidate the active principles responsible for DPP-IV inhibition. C. mukul (Guggul) and P. emblica (Amla) have the ability to inhibit DPP-IV and have anti-diabetic properties in a Type 2 diabetes mellitus experimental model. The binding sites and affinity of the active principles of C. mukul (Gluggusterone E, Gluggusterone Z) and P. emblica (Pzrogallol, beta-glucogallin, and gallic acid) responsible for DPP-IV enzyme inhibition were identified using in silico studies and compared to Vildagliptin, a synthetic DPP-IV inhibitor. The Vildagliptin and therapy groups had significantly lower glycated hemoglobin and DPP-IV levels. The anti-diabetic effect of C. mukul and P. emblica is due to their DPP-IV inhibitory action. The DPP-IV inhibitory action of Gluggusterone E, Gluggusterone Z, and beta-Glucogallin was found to be superior to Vildagliptin in docking tests.


Print this article     Email this article

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow