RESEARCH ARTICLE |
|
Year : 2016 | Volume
: 48
| Issue : 3 | Page : 298-303 |
An experimental study to evaluate the antiosteoporotic effect of Panchatikta Ghrita in a steroid-induced osteoporosis rat model
Renuka Munshi1, Tanvi Patil1, Chetan Garuda2, Dushyant Kothari2
1 Department of Clinical Pharmacology, TN Medical College and BYL Nair Charitable Hospital, Mumbai, Maharashtra, India 2 National Centre for Nanomaterials & Nanotechnology, Department of Physics, University of Mumbai, Mumbai, Maharashtra, India
Correspondence Address:
Dr. Renuka Munshi Department of Clinical Pharmacology, TN Medical College and BYL Nair Charitable Hospital, Mumbai, Maharashtra India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/0253-7613.182881
Objective: The study was conducted to develop the glucocorticoid-induced osteoporosis (GIO) model in Sprague-Dawley weanling rats using different doses of methylprednisolone (MP) and evaluate the antiosteoporotic effect of a classical ayurvedic formulation, Panchatikta Ghrita (PG), in this model.
Materials and Methods: Institutional Animal Ethics Committee approval was obtained. Development of model was done by subcutaneous injection of 2 doses of MP (14 and 28 mg/kg/week) for 4 weeks in 21-day old weanlings. Following confirmation of the dose of MP that induced osteoporosis, the antiosteoporotic effect of PG was tested in this model in comparison to a known antiosteoporotic agent, alendronate. Both alendronate (2.9 mg/kg/day) and PG (1.35 g/kg/day) were administered orally 2 weeks after MP - 14 mg/kg/week injection and continued for 4 weeks. Serum and urine calcium and inorganic phosphate were analyzed at weekly intervals. Animals were sacrificed after 6 weeks, and femur bones were processed to measure bone hardness and elasticity and for histological studies.
Results: Rats treated with MP - 14 mg/kg/week showed optimum osteoporotic effect with no mortality as compared to MP - 28 mg/kg/week; hence, this dose of MP was used further for the efficacy study. Osteoporotic rats treated with PG 1.35 g/kg showed increase in serum calcium and inorganic phosphate levels, whereas urine calcium and phosphate levels were significantly reduced. A significant decrease in a number of osteoclasts, whereas an increase in bone hardness and elasticity was observed as compared to diseased group demonstrating antiosteoporotic effect of PG.
Conclusion: PG has an antiosteoporotic effect in GIO rat model.
[FULL TEXT] [PDF]*
|