IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 5144 
Small font sizeDefault font sizeIncrease font size
Navigate Here
 »   Next article
 »   Previous article
 »   Table of Contents

Resource Links
 »   Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »   Citation Manager
 »   Access Statistics
 »   Reader Comments
 »   Email Alert *
 »   Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4473    
    Printed128    
    Emailed2    
    PDF Downloaded218    
    Comments [Add]    
    Cited by others 2    

Recommend this journal

 

 RESEARCH ARTICLE
Year : 2016  |  Volume : 48  |  Issue : 3  |  Page : 298-303

An experimental study to evaluate the antiosteoporotic effect of Panchatikta Ghrita in a steroid-induced osteoporosis rat model


1 Department of Clinical Pharmacology, TN Medical College and BYL Nair Charitable Hospital, Mumbai, Maharashtra, India
2 National Centre for Nanomaterials & Nanotechnology, Department of Physics, University of Mumbai, Mumbai, Maharashtra, India

Correspondence Address:
Dr. Renuka Munshi
Department of Clinical Pharmacology, TN Medical College and BYL Nair Charitable Hospital, Mumbai, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0253-7613.182881

Rights and Permissions

Objective: The study was conducted to develop the glucocorticoid-induced osteoporosis (GIO) model in Sprague-Dawley weanling rats using different doses of methylprednisolone (MP) and evaluate the antiosteoporotic effect of a classical ayurvedic formulation, Panchatikta Ghrita (PG), in this model. Materials and Methods: Institutional Animal Ethics Committee approval was obtained. Development of model was done by subcutaneous injection of 2 doses of MP (14 and 28 mg/kg/week) for 4 weeks in 21-day old weanlings. Following confirmation of the dose of MP that induced osteoporosis, the antiosteoporotic effect of PG was tested in this model in comparison to a known antiosteoporotic agent, alendronate. Both alendronate (2.9 mg/kg/day) and PG (1.35 g/kg/day) were administered orally 2 weeks after MP - 14 mg/kg/week injection and continued for 4 weeks. Serum and urine calcium and inorganic phosphate were analyzed at weekly intervals. Animals were sacrificed after 6 weeks, and femur bones were processed to measure bone hardness and elasticity and for histological studies. Results: Rats treated with MP - 14 mg/kg/week showed optimum osteoporotic effect with no mortality as compared to MP - 28 mg/kg/week; hence, this dose of MP was used further for the efficacy study. Osteoporotic rats treated with PG 1.35 g/kg showed increase in serum calcium and inorganic phosphate levels, whereas urine calcium and phosphate levels were significantly reduced. A significant decrease in a number of osteoclasts, whereas an increase in bone hardness and elasticity was observed as compared to diseased group demonstrating antiosteoporotic effect of PG. Conclusion: PG has an antiosteoporotic effect in GIO rat model.






[FULL TEXT] [PDF]*


        
Print this article     Email this article

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow