IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 11399 
Small font sizeDefault font sizeIncrease font size
Navigate Here
Resource Links
 »  Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »  Article in PDF (1,015 KB)
 »  Citation Manager
 »  Access Statistics
 »  Reader Comments
 »  Email Alert *
 »  Add to My List *
* Registration required (free)

In This Article
 »  Abstract
 » Introduction
 » Case Report
 » Discussion
 »  References
 »  Article Figures

 Article Access Statistics
    PDF Downloaded91    
    Comments [Add]    
    Cited by others 1    

Recommend this journal


 Table of Contents    
Year : 2016  |  Volume : 48  |  Issue : 2  |  Page : 216-218

Erythema multiforme due to arsenic trioxide in a case of acute promyelocytic leukemia: A diagnostic challenge

1 Institute of Hematology and Transfusion Medicine, Kolkata, West Bengal, India
2 Department of Pharmacology, Institute of Postgraduate Education and Research, Kolkata, West Bengal, India
3 Department of Dermatology, Medical College, Kolkata, West Bengal, India

Date of Submission09-Apr-2015
Date of Decision08-Jan-2016
Date of Acceptance17-Feb-2016
Date of Web Publication17-Mar-2016

Correspondence Address:
Nilay Kanti Das
Department of Dermatology, Medical College, Kolkata, West Bengal
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0253-7613.178827

Rights and Permissions

 » Abstract 

Erythema multiforme (EM) is an acute, self-limited, Type IV hypersensitivity reactions associated with infections and drugs. In this case of acute promyelocytic leukemia, EM diagnosed during the induction phase was mistakenly attributed to vancomycin used to treat febrile neutropenia during that period. However, the occurrence of the lesions of EM again during the consolidation phase with arsenic trioxide (ATO) lead to a re-evaluation of the patient and both the Naranjo and World Health Organization-Uppsala Monitoring Centre scale showed the causality association as “probable.” The rash responded to topical corticosteroids and antihistamines. This rare event of EM being caused by ATO may be attributed to the genetic variation of methyl conjugation in the individual which had triggered the response, and the altered metabolic byproducts acted as a hapten in the subsequent keratinocyte necrosis.

Keywords: Acute promyelocytic leukemia, arsenic trioxide, erythema multiforme, genetic variation

How to cite this article:
Badarkhe GV, Sil A, Bhattacharya S, Nath UK, Das NK. Erythema multiforme due to arsenic trioxide in a case of acute promyelocytic leukemia: A diagnostic challenge. Indian J Pharmacol 2016;48:216-8

How to cite this URL:
Badarkhe GV, Sil A, Bhattacharya S, Nath UK, Das NK. Erythema multiforme due to arsenic trioxide in a case of acute promyelocytic leukemia: A diagnostic challenge. Indian J Pharmacol [serial online] 2016 [cited 2023 Sep 29];48:216-8. Available from: https://www.ijp-online.com/text.asp?2016/48/2/216/178827

 » Introduction Top

Erythema multiforme (EM) is an acute, self-limited, Type IV hypersensitivity reaction associated with certain infections (herpes simplex and mycoplasma),[1] medications, and other triggers such as cold, sunlight, collagen vascular diseases, non-Hodgkin's lymphoma, and multiple myeloma.[2] Common medications causing EM are reportedly sulfa drugs, anticonvulsants, antibiotics (penicillin, ampicillin, tetracyclines, amoxicillin, cefotaxime, cefaclor, cephalexin, ciprofloxacin, erythromycin, minocycline, sulfonamides, trimethoprim-sulfamethoxazole, and vancomycin), anti-tuberculosis drugs (rifampicin, isoniazid, thiacetazone, and pyrazinamide), analgesics (aspirin, phenylbutazone, oxyphenbutazone, and phenazone).[3] However, EM due to arsenic trioxide (ATO) is yet to be reported. A PubMed search with keywords “erythema multiforme, arsenic trioxide” showed no results. Here, we are reporting a case of EM caused due to ATO in a patient of acute promyelocytic leukemia (APL).

 » Case Report Top

A 41-year-old female presented with a history of fatigue and intermittent fever of 2 weeks duration, together with easy bruising and menorrhagia. She had no previous history of bleeding manifestation. On examination, she was febrile and had pallor and cutaneous ecchymoses. There was no icterus, sternal tenderness, lymphadenopathy, or organomegaly. Her hemogram showed pancytopenia (hemoglobin 8.6 g/dl, white blood cell count 1.8 × 109/L, and platelet count 30 × 109/L). Examination of peripheral blood smear revealed the presence of abnormal promyelocytes, comprising 28% of total leukocytes. Bone marrow aspiration showed hypercellular marrow with trilineage suppression, with abnormal promyelocytes constituting more than 90% of bone marrow nucleated cells. The bone marrow morphology was suggestive of APL. Immunophenotyping showed these cells to be positive for myeloperoxidase, CD13 and CD33, weakly positive for CD15 and CD64, and negative for human leukocyte antigen-diabetic retinopathy, CD34, and CD117. Bone marrow karyotyping revealed 46 XX, t(15;17)(q22;q21). Real-time polymerase chain reaction for Promyelocytic Leukemia - Retinoic acid receptor alfa (PML-RARA) was positive for the variant form of the fusion protein. She was diagnosed to have APL, Sanz intermediate risk group.

The patient received induction therapy with the combination of all-trans-retinoic acid (ATRA) at 45 mg/m 2/day p.o. in two divided doses and ATO 0.15 mg/kg/day intravenous infusion over 2 h. The patient also received vancomycin to tide over the crisis of febrile neutropenia as an empiric antibiotic therapy as per hospital protocol. The induction therapy of ATRA and ATO was started on day 1 and was planned to be continued until bone marrow remission. On day 27 of induction therapy, she developed a few erythematous macular lesions on her upper chest [Figure 1]. The erythematous macules were diagnosed as EM. Naranjo's causality assessment was done, and the scale showed a score of 5 for vancomycin (probable adverse drug reaction [ADR]) and three for the ATRA-ATO combination (possible ADR). World Health Organization-Uppsala Monitoring Centre (WHO-UMC) causality categories fared similarly for either of the two drugs. Thus, the EM lesions were attributed to vancomycin used for febrile neutropenia during induction phase. Vancomycin was stopped and the lesions responded to antihistamine levocetirizine 10 mg/day. Morphological complete remission was documented on day 38 of induction phase.
Figure 1: Erythematous macular lesions on upper chest

Click here to view

Subsequently, she was planned to receive two cycles of ATO consolidation (0.15 mg/kg/day for 5 days a week for 5 consecutive weeks).[4] On day 15 of the first cycle ATO consolidation, she again developed a painless, mildly pruritic, erythematous plaque, and a few was having necrotic center or dusky erythema on the trunk and face. Palms and soles developed nonblanchable erythematous macule [Figure 2] though oral and genital mucosa was spared. The skin lesions were diagnosed as EM and body surface area involvement approximated 8%. Systemic symptoms were absent. The rash responded to levocetirizine 10 mg and topical betamethasone dipropionate 0.05% w/v twice daily over affected part and subsided within 7 days. ATO was continued due to the favorable benefit: Risk ratio and since only two cycles were planned.
Figure 2: Nonblanchable erythematous macule on soles

Click here to view

The adverse event report was submitted to pharmacovigilance program of India and bears the worldwide unique number of 2015-11618. The AMC report number is STM-AMC-2528.

 » Discussion Top

The recurrence of the rash in spite of nonusage of vancomycin was a cue that some other drug used in the course of therapy might be responsible. The causality assessment of the incidence of EM with use of ATO was done using the Naranjo ADR probability scale and WHO-UMC criteria. The Naranjo scale showed a score of 7, which places the reaction in the “probable” category. According to the WHO-UMC criteria, the case qualifies as “probable” causality category. Thus, the occurrence of EM was attributed to ATO. Severity assessment by the Hartwig's severity assessment scale [5] showed that the severity was “moderate” (Level 3) in nature.

Prophylactic steroids (prednisolone 0.5 mg/kg/day) were used with the subsequent cycle of ATO consolidation. The patient had mild EM skin lesions briefly in second consolidation cycle. At present, she has achieved complete molecular remission after consolidation therapy and was receiving maintenance therapy with ATRA, 6-mercaptopurine, and methotrexate.

EM-induced by drug hypersensitivity involves abnormal or altered metabolism of the responsible drug. Usually, the drugs associated with EM occur in patients who are slow acetylators. Thus, the major metabolism of the drug is carried out by an alternative route, i.e., oxidation by P450 enzymes. This results in the generation of reactive and potentially toxic metabolites. Affected individuals have a defect in detoxifying these reactive metabolites, which then act as hapten by binding to the proteins on epithelial cells covalently. This mounts an immune response leading to a severe skin reaction.[2]

ATO is metabolized by methylation to methylarsonic acid (MAA) and di-MAA.[6] There are pharmacogenetic variations in the activities of enzymes that catalyze S-methylation, O-methylation, N-methylation. These inherited variations are responsible for interindividual differences in the metabolism, effect, and toxicity of drugs that undergo methylation.[7]

EM caused by ATO is rarely reported. There might be a possibility that the genetic variation of methyl conjugation in the individual had triggered the response, and the altered metabolic byproducts acted as a hapten in the subsequent keratinocyte necrosis.

We should bear in mind that early institution of treatment is necessary to prevent the feared Steven–Johnson syndrome in such patients of drug hypersensitivity. Furthermore, one should be cautious in patients who have suffered such an episode earlier as EM tends to recur.

Financial Support and Sponsorship


Conflicts of Interest

There are no conflicts of interest.

 » References Top

Ladizinski B, Carter JB, Lee KC, Aaron DM. Diagnosis of herpes simplex virus-induced erythema multiforme confounded by previous infection with Mycoplasma pneumonia. J Drugs Dermatol 2013;12:707-9.  Back to cited text no. 1
Plaza JA. Erythema Multiforme. Medscape. Available from: http://www.emedicine.medscape.com/article/1122915-overview. [Last accessed on 2016 Feb 01].  Back to cited text no. 2
Mockenhaupt M, Viboud C, Dunant A, Naldi L, Halevy S, Bouwes Bavinck JN, et al. Stevens-Johnson syndrome and toxic epidermal necrolysis: Assessment of medication risks with emphasis on recently marketed drugs. The EuroSCAR-study. J Invest Dermatol 2008;128:35-44.  Back to cited text no. 3
Mathews V, George B, Lakshmi KM, Viswabandya A, Bajel A, Balasubramanian P, et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: Durable remissions with minimal toxicity. Blood 2006;107:2627-32.  Back to cited text no. 4
Hartwig SC, Siegel J, Schneider PJ. Preventability and severity assessment in reporting adverse drug reactions. Am J Hosp Pharm 1992;49:2229-32.  Back to cited text no. 5
Yamauchi H, Yamamura Y. Metabolism and excretion of orally administrated arsenic trioxide in the hamster. Toxicology 1985;34:113-21.  Back to cited text no. 6
Weinshilboum R. Pharmacogenetics of methylation: Relationship to drug metabolism. Clin Biochem 1988;21:201-10.  Back to cited text no. 7


  [Figure 1], [Figure 2]

This article has been cited by
1 Recent progress in DNA methyltransferase inhibitors as anticancer agents
Zhixiong Zhang, Guan Wang, Yuyan Li, Dongsheng Lei, Jin Xiang, Liang Ouyang, Yanyan Wang, Jinliang Yang
Frontiers in Pharmacology. 2022; 13
[Pubmed] | [DOI]


Print this article  Email this article


Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow