IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 665 
Small font sizeDefault font sizeIncrease font size
Navigate Here
 »   Next article
 »   Previous article
 »   Table of Contents

Resource Links
 »   Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »   Citation Manager
 »   Access Statistics
 »   Reader Comments
 »   Email Alert *
 »   Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded589    
    Comments [Add]    
    Cited by others 2    

Recommend this journal


Year : 2015  |  Volume : 47  |  Issue : 3  |  Page : 248-255

Reversing resistance: The next generation antibacterials

Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India

Correspondence Address:
Dr. Neel Jayesh Shah
Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0253-7613.157109

Rights and Permissions

Irrational antibiotic usage has led to vast spread resistance to available antibiotics, but we refuse to slide back to "preantibiotic era." The threat is serious with the "Enterococcus, Staphylococcous, Klebsiella, Acinetobacter, Pseudomonas and Enterobacter" organisms causing nosocomial infections that are difficult to treat because of the production of extended spectrum β-lactamases, carbapenamases and metallo-β-lactamases. Facing us is a situation where soon multidrug resistance would have spread across the globe with no antibiotics to withstand it. The infectious disease society of America and Food and Drug Administration have taken initiatives like the 10 × '20 where they plan to develop 10 new antibiotics by the year 2020. Existing classes of antibiotics against resistant bacteria include the carbapenems, oxazolidinones, glycopeptides, monobactams, streptogramins and daptomycin. Newer drugs in existing classes of antibiotics such as cephalosporins, aminoglycosides, tetracyclines, glycopeptides and β-lactamase inhibitors continue to get synthesized. The situation demands newer targets against bacterial machinery. Some of them include the peptidoglycantransferase, outer membrane protein of Pseudomonas, tRNA synthase, fatty acid synthase and mycobacterial ATP synthase. To curb the irrational and excessive usage of presently available antibiotics should be a priority if they are still to be kept in usage for the future.


Print this article     Email this article

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow