Article Access Statistics | | Viewed | 4709 | | Printed | 172 | | Emailed | 1 | | PDF Downloaded | 187 | | Comments | [Add] | | Cited by others | 3 | |
|

 Click on image for details.
|
|
RESEARCH ARTICLE |
|
Year : 2013 | Volume
: 45
| Issue : 5 | Page : 502-507 |
Chemoprotective potential of Coccinia indica against cyclophosphamide-induced toxicity
Ramesh K Nitharwal1, Hasit Patel1, Manvendra Singh Karchuli2, Rajesh Ramesh Ugale3
1 Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur - 441 002, India 2 Pinnacle Laboratories Pvt. Ltd., Bhopal, Madhya Pradesh, India 3 Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur - 441 002; SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur - 495 009, Chattisgarh, India
Correspondence Address:
Rajesh Ramesh Ugale Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur - 441 002; SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur - 495 009, Chattisgarh India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/0253-7613.117783
Objective: Although cyclophosphamide (CP), an alkylating agent, is used in the treatment of cancer owing to its broad-spectrum efficacy, its metabolites exhibit severe undesired toxicities in normal cells. The present study was aimed to investigate the chemoprotective potential of Coccinia indica against CP-induced oxidative stress, genotoxicity, and hepatotoxicity.
Materials and Methods: Rodents were orally pre-treated with Coccinia indica extract (200, 400, and 600 mg/kg) for five consecutive days. On 5th day, these animals were injected with CP (50 mg/kg i.p) and sacrificed after 24 hrs. for the evaluation of oxidative stress, hepatotoxicity, micronucleus formation, and chromosomal aberrations.
Results: We found that the CP significantly increased malondialdehyde (MDA) and decreased catalase and glutathione (GSH) levels in brain, and it was significantly reversed by Coccinia indica extract (400 and 600 mg/kg). Further, pre-treatment with Coccinia indica extract (200, 400, 600 mg/kg) significantly and dose-dependently reduced micronuclei formation and incidence of aberrant cells. We also found that the CP-induced increase in the serum biomarker enzymes like alkaline phosphatase (ALP), alkaline aminotransferase (ALT), and aspartate aminotransferase (AST) were significantly reduced by Coccinia indica extract.
Conclusion: Thus, the present results indicate the protective effect of Coccinia indica extract against CP-induced oxidative stress, genotoxicity, as well as hepatotoxicity.
[FULL TEXT] [PDF]*
|