IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 6230 
Small font sizeDefault font sizeIncrease font size
Navigate Here
Resource Links
 »  Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »  Article in PDF (851 KB)
 »  Citation Manager
 »  Access Statistics
 »  Reader Comments
 »  Email Alert *
 »  Add to My List *
* Registration required (free)

In This Article
 »  Abstract
 »  Introduction
 »  Materials and Me...
 »  Results
 »  Discussion
 »  Conclusion
 »  References
 »  Article Figures
 »  Article Tables

 Article Access Statistics
    PDF Downloaded336    
    Comments [Add]    
    Cited by others 15    

Recommend this journal


 Table of Contents    
Year : 2011  |  Volume : 43  |  Issue : 3  |  Page : 330-335

Effect of alcohol on blood glucose and antioxidant enzymes in the liver and kidney of diabetic rats

1 Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
2 Laboratory of Exercise Biochemistry, Taipei Sports Universiy, Taipei City, Taiwan

Date of Submission23-Sep-2009
Date of Decision23-Feb-2011
Date of Acceptance23-Feb-2011
Date of Web Publication24-May-2011

Correspondence Address:
K Sathyavelu Reddy
Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0253-7613.81504

Rights and Permissions

 » Abstract 

Objective: Diabetes mellitus affects every organ in the man including eyes, kidney, heart, and nervous system. Alcohol consumption is a widespread practice. As the effects of chronic alcohol consumption on diabetic state have been little studied, this study was conducted with the objective of evaluating the effect of alcohol in diabetic rats.
Materials and Methods: For this study, the rats were divided into five groups (n = 6 in each group): normal control (NC), alcohol treatment (At), diabetic control (DC), diabetic plus alcohol treatment (D + At), diabetic plus glibenclamide treatment (D + Gli). Alcohol treatment was given to the diabetic rats for 30 days. During the period the blood glucose levels, and body weight changes were observed at regular intervals. The antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) levels were assayed in the liver and kidney tissues.
Results: The blood glucose levels were significantly (P < 0.001) elevated and body weight significantly (P < 0.001) decreased in alcohol-treated diabetic rats. SOD and CAT activities were decreased and the MDA level increased significantly (P < 0.001) in alcohol-treated diabetic rats. Histopathological studies showed that alcohol damages the liver and kidney tissues in diabetic rats.
Conclusion: These finddings concluded that the consumption of alcohol in diabetic rats worsens the condition. So the consumption of alcohol by diabetic subjects may be potentially harmful.

Keywords: Diabetes, alcohol, antioxidant enzymes, blood glucose levels, rats

How to cite this article:
Shanmugam K R, Mallikarjuna K, Reddy K S. Effect of alcohol on blood glucose and antioxidant enzymes in the liver and kidney of diabetic rats. Indian J Pharmacol 2011;43:330-5

How to cite this URL:
Shanmugam K R, Mallikarjuna K, Reddy K S. Effect of alcohol on blood glucose and antioxidant enzymes in the liver and kidney of diabetic rats. Indian J Pharmacol [serial online] 2011 [cited 2023 Sep 29];43:330-5. Available from: https://www.ijp-online.com/text.asp?2011/43/3/330/81504

 » Introduction Top

The prevalence of diabetes mellitus has increased in recent years, particularly type 2 diabetes, which is related to obesity and sedentary lifestyle. [1] The total number of people globally affected by diabetes was reported to be 171 million in 2000 and is projected to be 366 million by 2030, and the vast majority of these cases will be of type 2 diabetes. [2] Free radical production has been reported to be increased in patients with diabetes mellitus and hyperglycemia appears to be the contributing factor for the generation of reactive oxygen species (ROS) which lower the concentrations of antioxidant enzymes. [3] Oxidative stress induced by a high glucose concentration plays a central role in complications of diabetes. [4],[5] Oxidative stress induces the production of highly reactive oxygen radicals that are toxic to cells and has been attributed to protein glycation and/or glucose auto-oxidation owing to a hyperglycemic environment. [6] Oxygen radicals also interact with the lipid bilayer and produce lipid peroxides particularly in cell membranes. [5] Lipid peroxidation of cellular structures is thought to play an important role in complications of diabetes. [6]

Alcoholic beverages are used universally and alcohol is the world's most widely used psychoactive drug, but chronic, excessive alcohol consumption leads to permanent organ damage or death. Alcohol is rapidly oxidized in the liver tissue to acetaldehyde and acetate by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), respectively. [7] Further alcohol consumption and diabetes disturb the balance between the pro- and antioxidant systems of the organism, thereby leading to the oxidative stress by generating free radicals or ROS, [8] which results in liver and kidney injury.

There are limited reports on the influence of alcohol on a diabetic state. A J-shaped relationship between alcohol consumption and diabetes has been reported by Hoffmeister et al. [9] Chronic excessive consumption of alcohol may lead to deleterious effects upon many organs and metabolism. [10] Diabetogenic effects of alcohol include its contribution to obesity, induction of pancreatitis, and disturbance of carbohydrate and glucose metabolism. [11] However, the harmful effects of alcohol abuse on the functions of liver, kidney, heart, immune system, and central and peripheral neural system are not yet known. [12]

There are no reports on the effect of alcohol on antioxidant enzymes and blood glucose in diabetic rats. The purpose of this study was to investigate the effect of alcohol in streptozotocin (STZ)-induced diabetic rats by measuring blood glucose levels and assaying the antioxidant enzymes activities in liver and kidney tissues.

 » Materials and Methods Top


Male Wistar albino rats aged 6 months and weighing 180 ± 20 g were obtained from Indian Institute of Science, Bangalore, Karnataka, India. The rats were housed in clean polypropylene cages having six rats per cage and maintained in a temperature-controlled room (27 ± 2°C) with a photoperiod of a 12-h light and 12-h dark cycle. The rats were given standard pellet diet (Lipton Rat Feed, Ltd., Pune, Maharashtra, India) and water ad libitum throughout the experimental period.

The experiments were carried out in accordance with CPCSEA guidelines and the protocol was approved by the Institutional Animal Ethics Committee (regd. no. 438/01/a/CPCSEA/ dt.17.07.2001, in its resolution number 9/IAEC/SVU/2001/dt. 4.03.2002).


Streptozotocin (STZ) was obtained from Sigma Chemicals (USA). All the other chemicals used were of analytical grade.

Induction of Diabetes

The animals were fasted overnight and diabetes was induced by a single intraperitoneal injection of a freshly prepared solution of STZ (50 mg/kg body weight) in a 0.1 M cold citrate buffer (pH 4.5). The animals were considered as diabetic, if their blood glucose values were above 250 mg/dL on the third day after STZ injection.

Grouping of Animals

The rats were divided into five groups of six rats in each group and treated as follows:

  1. Normal control (NC): This group of rats received saline (0.9%), for a period of 30 days.
  2. Alcohol treatment (At): This group of rats received alcohol as described by Mallikarjuna et al. [13] orally with a dose of 20% (2 g/kg body weight) via an oral gavage tube for 30 days.
  3. Diabetic control (STZ 50 mg/kg body weight) (DC): STZ was given intraperitonially for the induction of diabetes in this group and this group of rats received saline (0.9%), for a period of 30 days.
  4. Diabetic plus alcohol treatment (D + At): Diabetic rats received alcohol at a dosage of 20% (2 g/kg body weight) for 30 days orally.
  5. Diabetic + glibenclamide treatment (D + Gli): Diabetic rats treated with glibenclamide (600 μg/kg body weight) in an aqueous solution via an oral gavage tube for 30 days.

Biochemical Assays

The superoxide dismutase (SOD) activity was assayed in the liver and kidney homogenates by the method of Misra and Fridovich [14] at 480 nm for 4 min on a Hitachi U-2000 spectrophotometer. The activity was expressed as the amount of enzyme that inhibits the oxidation of epinephrine by 50%, which is equal to 1 U per milligram of protein. The catalase (CAT) activity was determined at room temperature by using the method of Aebi, [15] and the absorbance of the sample was measured at 240 nm for 1 min by a UV spectrophotometer. The extent of lipid peroxidation was estimated as the concentration of thiobarbituric acid-reactive malondialdehyde (MDA) by using the method of Ohkawa et al. [16] The blood glucose levels were measured by using an Accucheck glucometer (Roche, Germany).

Statistical Analysis

Analysis of variance (ANOVA) and Duncan's multiple comparison tests among data were carried out using SPSS (version 13.5; SPSS Inc., Chicago, IL, USA) and MS Office, Excel, software for the significance of the main effects (factors), and treatments along with their interactions. Statistical significance was set at P < 0.05.

 » Results Top

Effect of Alcohol on Blood Glucose and Body Weight Changes

In alcohol-treated rats, there was increase in blood glucose levels. In diabetic rats with alcohol treatment, blood glucose levels were significantly (P < 0.001) higher than those in normal control, alcohol-treated and diabetic rats [Table 1].
Table 1: Changes in blood glucose levels

Click here to view

In the alcohol-treated group, the body weight was increased. However, in the diabetic group, the body weight decreased significantly (P<0.001) whereas in alcohol-treated diabetic rats, the body weights were decreased [Table 2].
Table 2: Changes in body weight

Click here to view

Effect of Alcohol on Antioxidant Enzymes in Liver and Kidney Tissues of Diabetic Rats

A significant (P < 0.001) reduction in SOD and CAT activities are observed in alcohol-treated and diabetic control rats as compared to normal control rats. MDA levels were increased significantly (P < 0.001) in alcohol-treated and diabetic rats Furthermore in alcohol treated diabetic rats, we observed significantly (P < 0.001) low activities of SOD and CAT and a very high level of MDA [Figure 1].
Figure 1: Changes in superoxide dismutase (SOD), catalase (CAT) activities and MDA levels in the Liver and Kidney tissues of NC = normal control rats, At = alcohol treatment rats, DC = diabetic control rats, D + At = diabetic + alcohol treatment rats, D + Gli = diabetic + glibenclamide treatment rats

Click here to view

Impact of Alcohol on Histopathological Changes in Liver and Kidney Tissues of Diabetic Rats

In STZ-induced diabetic control rats, severe tubular degeneration, degeneration of glomeruli, focal necrosis of tubules, cystic dilatation of tubules, and fatty infiltration in the kidney tissue were observed. The above pathological changes were enhanced in alcohol-treated diabetic rats and dilatation of Bowman's capsule and hyaline casts were also observed [Figure 2].
Figure 2: Effect of alcohol on histopathological changes in STZ induced diabetic rat kidney Photomicrograph of normal control (NC) kidney showing 1. Normal renal parenchyma, 2. Normal tubules, 3. Normal glomeruli. Photomicrograph of alcohol treated (At) kidney showing, 1. Severe Tubular degeneration, 2. Severe congestion of blood vessels, 3. Necrosis of the renal cells, 4. Degeneration of glomeruli. Photomicrograph of diabetic control (DC) kidney showing, 1. Severe tubular degeneration, 2. Focal necrosis of tubules, 3. Degeneration of glomeruli. Photomicrograph of diabetic +alcohol treated (D+At) rat kidney showing 1. Hyaline casts, 2. Dilatation of Bowmen's capsule. 3. Degeneration of tubules

Click here to view

In the alcohol-treated group and diabetic group, hepatocytes, central vein, and sinusoids of liver were damaged, whereas in the diabetic group treated with alcohol, the hepatocytes, sinusoids, and central vein were more severely damaged [Figure 3].
Figure 3: Effect of alcohol on histopathological changes in STZ induced diabetic rat liver Photomicrograph of normal control (NC) liver showing 1. Normal Central vein, 2. Normal hepatocytes. Photomicrograph of alcohol treated (At) liver showing, 1. Dilatation of central vein, 2. Disruption of hepatocytes, 3. Necrosis of hepatocytes. Photomicrograph of diabetic control (DC) liver showing, 1. Dilatation of central vein, 2. Dilation of hepatocytes, 3. Necrosis of hepatocytes. Photomicrograph of diabetic +alcohol treated (D+At) rat liver showing 1. More Dilatation of central vein, 2. Dilation and degeneration of hepatic cells, 3. Damaged hepatocytes

Click here to view

 » Discussion Top

The present study was designed to investigate the effect of alcohol on blood glucose levels and antioxidant enzymes in STZ-induced diabetic rats.

In the present investigation, diabetic rats showed the elevation in blood glucose levels, confirming abnormalities of glucose metabolism [17] and also due to the destruction of pancreatic beta cells by STZ reinforcing the view that STZ induces diabetes probably through the generation of free radicals [18] whereas in alcohol treatment (At) alone and combination treatment (D + At) groups, the blood glucose levels were increased. A number of researchers have reported that alcohol administration to diabetic rats elevates the blood glucose levels. Alcohol treatment has been implicated to induce beta cell dysfunction, increase insulin secretary responses, and enhance glucose disposal rates in subjects with diabetes. [19]

In this study, alcohol treatment in the rats increased the body weight. This may be due to the deposition of lipids in adipose tissue and fluid accumulation in the organs. This finding is in agreement with previous findings of Rajakrishnan et al. [20] In the diabetic group, the body weight was decreased. Weight loss during diabetes is mainly related to urinary glucose excretion because cells use glucose for many functions. Another factor could be the osmotic diuresis resulting in hyperosmotic dehydration. [21] With alcohol treatment in diabetic rats, we observed significantly (P < 0.001) lower body weights compared to diabetic rats. This was due to the dehydration, excess utilization of proteins for the energy. So, in alcohol-treated diabetic rats, decreased body weight was observed.

SOD scavenges the superoxide radical by converting it to H 2 O 2 and oxygen. In the present study, the SOD activity was decreased in the diabetic group. Pari and Latha [22] also reported that the SOD activity was decreased in diabetic rats. The decrease in the SOD activity in diabetic rats could result from the inefficient scavenging of ROS, which might be implicated in the oxidative inactivation of enzymes and especially the deleterious effects due to the accumulation of superoxide radicals, or by glycosylation of the enzymes, which have been reported to occur in diabetes. [23] In the current investigation, we observed a decreased activity of SOD in the alcohol-treated group. Shanmugam et al. [24] and Mallikarjuna et al. [13] reported that alcohol administration depleted the SOD activity in the kidney and liver tissues of albino rats. Several studies have reported that alcohol consumption decreases the SOD activity in the liver, heart, brain, kidney muscle, and serum. [25] The reduced activity of SOD in the presence of alcohol may cause the accumulation of O2¯, H 2 O 2 , or the products of its decomposition. However, in the combination treatment group, i.e., alcohol-treated diabetic rats (D + At), the SOD activity was significantly (P < 0.001) decreased compared to that of the alcohol-treated group and diabetic control group. This may be due to the excessive production of free radicals and superoxide radicals, so the SOD activity was decreased to counter the same.

In the present study, the CAT activity was decreased in diabetic rats. The reduced activity of CAT in kidney and liver tissues may result in a number of deleterious effects due to the accumulation of H 2 O 2 . [26] The CAT activity was also decreased in alcohol-treated (At) rats in the present study. The reduced activity of CAT in the presence of alcohol causes the accumulation of free radicals which are toxic in nature. Balasubramaniyan et al. [27] and Mallikarjuna et al. [13] reported that the CAT activity in kidney and liver was decreased in the alcohol-treated group. CAT helps to scavenge hydroxyl ions, so the CAT activity was lowered in alcohol-treated rats [28] whereas in the combination treatment (D + At) group, the CAT activity was significantly decreased (P < 0.001) compared to the alcohol-treated or diabetic group. This may be due to the excess production and accumulation of hydroxyl radicals. CAT helps in neutralizing these toxic hydroxyl radicals, so the CAT activity was decreased. The additive effects of alcohol are observed in diabetic animals causing a greater reduction in these two enzymes.

In the current study, MDA levels were increased in diabetic rats. Previous studies have reported an increase in lipid peroxidation in the liver, kidney, and brain of diabetic rats. [29] Lipid peroxide-mediated tissue damage has been observed in type I and type II diabetes. Higher levels of lipid peroxides in plasma urine and renal proximal tubules were observed in diabetic rats. Kakkar et al. [30] also reported the same. Ostrowska et al. [31] reported a threefold higher concentration of lipid hydroperoxides in alcohol-treated rats compared to the control groups. During alcohol metabolism, potentially dangerous byproducts are generated including ROS which react with membrane lipids and cause lipid peroxidation leading to cell death. [32] In alcohol treated diabetic rats, we observed significantly (P < 0.001) higher levels of MDA compared to alcohol and diabetic groups. During combination treatment, more free radicals are produced, hence the MDA level was increased in combination treatment.

The histopathological studies revealed that in the kidney tissue of alcohol-treated rats, tubular degeneration, necrosis of renal cells, and degeneration of Bowman's capsule were observed. In diabetic control rats, severe tubular degeneration, degeneration of glomeruli, focal necrosis of tubules, cystic dilatation of tubules, and fatty infiltration were observed. This might be associated with increased diuresis and renal hypertrophy in diabetic rats. The above-mentioned pathological changes were more severe in alcohol-treated diabetic rats. The dilatation of Bowmen's capsule and hyaline casts were also observed.

The histopathological studies of the alcoholic liver showed the disruption of hepatocytes, sinusoids, and central vein. This proves that free radical production might cause hepatic damage. In the diabetic group, greater damage of hepatocytes, sinusoids, and central vein was observed Whereas in the alcohol-treated diabetic group, hepatocytes, sinusoids, and central vein were more severely degenerated. The histological evidence of alcohol-treated diabetic rats suggests that structural alterations at the end of 30 days are due to diabetic stress and alcoholic stress. Thus, in addition to elevated levels of blood glucose, histopathological observations also support the concept that alcohol produced additive effects, and hence renal, hepatic tissue damage in diabetic rats.

 » Conclusion Top

From this study, it was concluded that alcohol consumption appears as an aggravating factor in diabetes. To our knowledge, this is the first report on the effect of alcohol on blood glucose levels and antioxidant enzymes in diabetic rats. However, further studies are necessary to confirm these effects.

 » References Top

1.Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001;414:782-7.   Back to cited text no. 1
2.King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: Prevalence, numerical estimates, and projections. Diabetes Care 1998;21:1414-31.  Back to cited text no. 2
3.Giugliano D, Paolisso G, Ceriello A. Oxidative stress and diabetic vascular complications. Diabetes Care 1996;19:257-67.  Back to cited text no. 3
4.Medvedeva IV, Pufacheva TA, Dorodneva EF. Influence of glucose control on the main parameters of serum lipid profile and platelet membranes in patients with metabolic syndrome and type 2 diabetes mellitus. Atheroscler Suppl 2002;3:163.  Back to cited text no. 4
5.Miranda M, Muriach M, Almansa I, Arnal E, Messeguer A, Diaz-Llopis M, et al. CR-6 protects glutathione peroxidase activity in experimental diabetes. Free Radic Biol Med 2007;43:1494-8.  Back to cited text no. 5
6.Kesavulu M, Rao BK, Giri R, Vijaya J, Subramanyam G, Apparao CH. Lipid peroxidation and antioxidant enzyme status in Type 2 diabetic with coronary heart disease. Diabetes Res Clin Pract 2001;53:33.  Back to cited text no. 6
7.Lieber CS. Alcohol and the liver : Metabolism of ethanol, metabolic effects and pathogenesis of injury. Acta Med Scand Suppl 1985;703:11-55.   Back to cited text no. 7
8.Saravanan N, Nalini N. Antioxidant effect of Hemidesmus indicus on ethanol induced hepatotoxicity in rats. J Med Food 2007;10:675-82.   Back to cited text no. 8
9.Hoffmeister H, Schelp FP, Mensink GB, Dietz E, Bohning D. The relationship between alcohol consumption, health indicators and mortality in the german population. Int J Epidemiol 1999;28:1066-72.  Back to cited text no. 9
10.Farren CK, Tipton KF. Trait markers for alcoholism; clinical utility. Alcohol & Alcoholism 1999;34:649-65.  Back to cited text no. 10
11.Avogaro A, Tiengo A. Alcohol, glucose metabolism and diabetes. Diabetes Metab Rev 1993;9:129-46.  Back to cited text no. 11
12.Khisti RT, Penland SN, Vandoren MJ, Grobin AC, Morrow AL. GABAergic neurosteroid modulation of ethanol actions. World J Biol Psychiatry 2002;3:87-95.  Back to cited text no. 12
13.Mallikarjuna K, Sahitya Chetan P, Sathyavelu Reddy K, Rajendra W. Ethanol toxicity: Rehabilitation of hepatic antioxidant defense system with dietary ginger. Fitoterapia 2008;79:174-8.  Back to cited text no. 13
14.Misra HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972;247:3170-5.  Back to cited text no. 14
15.Aebi H. Catalase in vitro. Methods Enzymol 1984;105:125-6.  Back to cited text no. 15
16.Ohkawa H, Ohishi N, Yagi K. Assay of lipid peroxides in animal and tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8.  Back to cited text no. 16
17.Verges B. Lipid abnormalities in diabetes mellitus. Rev Med Interne 1991;12:277-81.   Back to cited text no. 17
18.Wohaieb SA, Godin DV. Alterations in Free radical tissue defense mechanisms in streptozocin induced diabetes in rats. Effect of insulin treatment. Diabetes 1987;36:1014-8.  Back to cited text no. 18
19.Patto RJ, Russo EK, Borges DR, Neves MM. The enteroinsular axis and endocrine pancreatic function in chronic alcohol cosumers. Evidence for early beta cell hypofunction. Mt Sinai J Med 1993;60:317-20.   Back to cited text no. 19
20.Rajakrishnan V, Viswanathan P, Menon VP. Adaptation of siblings of female rats given ethanol:effect of N-acetyl-L-cysteine. Amino acids 1997;12:323-41.  Back to cited text no. 20
21.Kaplan SA, Lippe BM, Brinkman CR, Davidson MB, Geffner ME. Diabetes mellitus. Ann Intern Med 1982;96:635-49.  Back to cited text no. 21
22.Pari L, Latha M. Antidiabetic effect of Scoparia dulcis: Effect on lipid peroxidation in streptozotocin diabetes. Gen Physiol Biophys 2005;24:13-26.  Back to cited text no. 22
23.Ravi K, Ramachandran B, Subramanian S. Protective effect of Eugenia jambolana seed kernel on tissue antioxidants in streptozotocin-induced diabetic rats. Biol Pharm Bull 2004;27:1212-7.  Back to cited text no. 23
24.Shanmugam KR, Ramakrishna CH, Mallikarjuna K, Reddy KS. Protective effect of ginger in alcohol-induced renal damage and antioxidant enzymes in male albino rats. Indian J Exp Biol 2010;4:143-9.   Back to cited text no. 24
25.Husain K, Scott BR, Reddy SK, Somani SM. Chronic ethanol and nicotine interaction on rat tissue antioxidant defense system. Alcohol 2001;25:89-97.   Back to cited text no. 25
26.Limaye PV, Raghuram N, Sivakami S. Oxidative stress and gene expression of antioxidant enzymes in the renal cortex of Streptozotocin-induced diabetic rats. Mol Cell Biochem 2003;243:147-52.  Back to cited text no. 26
27.Balasubramaniyan V, Kalaivani Sailaja J, Nalini N. Role of leptin on alcohol-induced oxidative stress in Swiss mice. Pharmacol Res 2003;47:211-6.  Back to cited text no. 27
28.Rodrigo R, Trujillo S, Bosco C, Orellana M, Thielemann L, Araya J. Changes in (Na+K) Adenopsine Triphosphatase Activity and Ultrastructure of lung and kidney Associated with oxidative stress induced by Acute ethanol. Chest 2002;121:589-96.  Back to cited text no. 28
29.Latha M, Pari L. Preventive effects of Cassia auriculata L. Flowers on brain lipid peroxidation in rats treated with streptozotocin. Mol Cell Biochem 2003;243:23-8.  Back to cited text no. 29
30.Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J. Antioxidant defense system in diabetic kidney: A time course study. Life Sci 1997;60:667-79.  Back to cited text no. 30
31.Ostrowska J, Luczaj W, Kasacka I, Rozanski A, Skrzydlewska E. Green tea protects against ethanol-induced lipid peroxidation in rat organs. Alcohol 2004;32:25-32.   Back to cited text no. 31
32.Bailey SM, Pietsch EC, Cunningham CC. Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III. Free Radical Biol Med 1999;27:891-900.  Back to cited text no. 32


  [Figure 1], [Figure 2], [Figure 3]

  [Table 1], [Table 2]

This article has been cited by
1 Synthesis and preparation of vitamin A coupled butein-loaded solid lipid nanoparticles for liver fibrosis therapy in rats
Somayeh Mahdinloo, Salar Hemmati, Hadi Valizadeh, Mohammad Mahmoudian, Javad Mahmoudi, Leyla Roshangar, Muhammad Sarfraz, Parvin Zakeri-Milani
International Journal of Pharmaceutics. 2022; : 122063
[Pubmed] | [DOI]
2 Determination of Some Antioxidant Activities (Superoxide Dismutase, Catalase, Reduced Glutathione) and Oxidative Stress Level (Malondialdehyde Acid) in Cirrhotic Liver Patients
Hamam HAMAM, Halit DEMIR, Mesut AYDIN, Canan DEMIR
Middle Black Sea Journal of Health Science. 2022;
[Pubmed] | [DOI]
3 The acute effect of thiamine on serum insulin levels and some biochemical parameters in excessive alcohol-consuming rats
Mehmet Akif Ersoy Üniversitesi Veteriner Fakültesi Dergisi. 2022;
[Pubmed] | [DOI]
4 Oxidative Stress, Genomic Integrity, and Liver Diseases
Nanthini Sadasivam, Yu-Ji Kim, Kamalakannan Radhakrishnan, Don-Kyu Kim
Molecules. 2022; 27(10): 3159
[Pubmed] | [DOI]
5 Ginger Root Extract Improves GI Health in Diabetic Rats by Improving Intestinal Integrity and Mitochondrial Function
Rui Wang, Julianna Maria Santos, Jannette M. Dufour, Emily R. Stephens, Jonathan M. Miranda, Rachel L. Washburn, Taylor Hibler, Gurvinder Kaur, Dingbo Lin, Chwan-Li Shen
Nutrients. 2022; 14(20): 4384
[Pubmed] | [DOI]
6 N-acetylcysteine relieves neurologic signs of acute ethanol hangover in rats
Denis V. Kurkin, Evgeny I. Morkovin, Nazar A. Osadchenko, Dmitry A. Bakulin, Marina A. Dubrovina, Yulia V. Gorbunova, Elizaveta E. Abrosimova, Vladislav E. Pustynnikov, Ivan N. Tyurenkov, Vladimir I. Petrov
Research Results in Pharmacology. 2021; 7(1): 75
[Pubmed] | [DOI]
7 Can we reduce oxidative stress with liver transplantation?
Mesut Aydin, Yaren Dirik, Canan Demir, Harun Tolunay, Halit Demir
Journal of Medical Biochemistry. 2021; 40(4): 351
[Pubmed] | [DOI]
8 The possible role of CREB-BDNF signaling pathway in neuroprotective effects of minocycline against alcohol-induced neurodegeneration: molecular and behavioral evidences
Majid Motaghinejad, Roya Mashayekh, Manijeh Motevalian, Sepideh Safari
Fundamental & Clinical Pharmacology. 2021; 35(1): 113
[Pubmed] | [DOI]
9 Renoprotective effect of Capsicum annum against ethanol-induced oxidative stress and renal apoptosis
Moumita Das, Subhashree Basu, Bhaswati Banerjee, Kuladip Jana, Anurupa Sen, Gouriprosad Datta
Journal of Food Biochemistry. 2021; 45(3)
[Pubmed] | [DOI]
10 Diabetic complications and oxidative stress: The role of phenolic-rich extracts of saw palmetto and date palm seeds
Amal Z. Barakat, Roqaya I. Bassuiny, Azza M. Abdel-Aty, Saleh A. Mohamed
Journal of Food Biochemistry. 2020; 44(11)
[Pubmed] | [DOI]
11 Curcumin attenuates oxidative stress induced NF?B mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes
Kahkashan Rashid, Sayantani Chowdhury, Sumit Ghosh, Parames C. Sil
Biochemical Pharmacology. 2017; 143: 140
[Pubmed] | [DOI]
12 Deregulation of NF-?B–miR-146a negative feedback loop may be involved in the pathogenesis of diabetic neuropathy
Nasibeh Yousefzadeh,Mohammad Reza Alipour,Farhad Ghadiri Soufi
Journal of Physiology and Biochemistry. 2015;
[Pubmed] | [DOI]
13 Taurine ameliorate alloxan induced oxidative stress and intrinsic apoptotic pathway in the hepatic tissue of diabetic rats
Kahkashan Rashid,Joydeep Das,Parames C. Sil
Food and Chemical Toxicology. 2013; 51: 317
[Pubmed] | [DOI]
14 Chronic alcohol consumption, type 2 diabetes mellitus, insulin-like growth factor-I (IGF-I), and growth hormone (GH) in ethanol-treated diabetic rats
Soo-Jeong Kim,Anes Ju,Seul-Gi Lim,Dai-Jin Kim
Life Sciences. 2013; 93(21): 778
[Pubmed] | [DOI]
15 Mangiferin fromSalacia chinensisPrevents Oxidative Stress and Protects Pancreaticß-Cells in Streptozotocin-Induced Diabetic Rats
Periyar Selvam Sellamuthu,Palanisamy Arulselvan,Balu Periamallipatti Muniappan,Sharida Fakurazi,Murugesan Kandasamy
Journal of Medicinal Food. 2013; 16(8): 719
[Pubmed] | [DOI]


Print this article  Email this article


Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow