IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 14783 
Small font sizeDefault font sizeIncrease font size
Navigate Here
  Search
 
 » Next article
 » Previous article 
 » Table of Contents
  
Resource Links
 »  Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »  Article in PDF (881 KB)
 »  Citation Manager
 »  Access Statistics
 »  Reader Comments
 »  Email Alert *
 »  Add to My List *
* Registration required (free)

 
In This Article
 »  Abstract
 »  Introduction
 »  Materials and Me...
 »  Results
 »  Discussion
 »  References
 »  Article Figures
 »  Article Tables

 Article Access Statistics
    Viewed12198    
    Printed373    
    Emailed19    
    PDF Downloaded841    
    Comments [Add]    
    Cited by others 17    

Recommend this journal

 


 
RESEARCH ARTICLE
Year : 2010  |  Volume : 42  |  Issue : 4  |  Page : 224-228
 

Antidiabetic activity of Cassia occidentalis (Linn) in normal and alloxan-induced diabetic rats


Department of Pharmacology, I.S.F College of Pharmacy, Moga - 142 001, Punjab, India

Date of Submission24-Feb-2010
Date of Decision03-Apr-2010
Date of Acceptance19-Jun-2010
Date of Web Publication13-Aug-2010

Correspondence Address:
Laxmi Verma
Department of Pharmacology, I.S.F College of Pharmacy, Moga - 142 001, Punjab
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0253-7613.68422

Rights and Permissions

 » Abstract 

Objective : To evaluate the hypoglycemic activity of various extracts, petroleum ether, chloroform and aqueous extract of Cassia occidentalis in normal and alloxan-induced diabetic rats.
Materials and Methods : Petroleum ether, chloroform and aqueous extract of whole plant of Cassia occidentalis were orally tested at the dose of 200 mg/kg for hypoglycemic effect in normal and alloxan-induced diabetic rats. In addition, changes in body weight, serum cholesterol, triglyceride and total protein levels, assessed in the ethanol extract-treated diabetic rats, were compared with diabetic control and normal animals. Histopathological observations during 21 days treatment were also evaluated.
Results : Aqueous extract of C. occidentalis produced a significant reduction in fasting blood glucose levels in the normal and alloxan-induced diabetic rats. Apart from aqueous extract, petroleum ether extract showed activity from day 14 and chloroform extract showed activity from 7 days. Significant differences were observed in serum lipid profiles (cholesterol and triglyceride), serum protein, and changes in body weight by aqueous extract treated-diabetic animals, when compared with the diabetic control and normal animals. Concurrent histopathological studies of the pancreas of these animals showed comparable regeneration by extract which were earlier necrosed by alloxan.
Conclusion : Aqueous extract of C. occidentalis exhibited significant antihyperglycemic activity in normal and alloxan-induced diabetic rats. They also showed improvement in parameters like body weight and serum lipid profiles as well as histopathological studies showed regeneration of β-cells of pancreas and so might be of value in diabetes treatment.


Keywords: Alloxan, antidiabetic activity, Cassia occidentalis


How to cite this article:
Verma L, Khatri A, Kaushik B, Patil UK, Pawar RS. Antidiabetic activity of Cassia occidentalis (Linn) in normal and alloxan-induced diabetic rats. Indian J Pharmacol 2010;42:224-8

How to cite this URL:
Verma L, Khatri A, Kaushik B, Patil UK, Pawar RS. Antidiabetic activity of Cassia occidentalis (Linn) in normal and alloxan-induced diabetic rats. Indian J Pharmacol [serial online] 2010 [cited 2023 Sep 28];42:224-8. Available from: https://www.ijp-online.com/text.asp?2010/42/4/224/68422



 » Introduction Top


Diabetes mellitus is a chronic metabolic disorder resulting from insulin deficiency, characterized by hyperglycaemia, altered metabolism of carbohydrates, protein and lipids, and an increased risk of vascular complication. [1]

In conventional therapy, type I diabetes is managed with exogenous insulin and type 2 with oral hypoglycemic agents (sulphonylureas, biguanides etc). In traditional practice medicinal plants are used in many countries to control diabetes mellitus. Diabetes mellitus has recently been identified by Indian Council of Medical Research (ICMR) as one of the refractory diseases for which satisfactory treatment is not available in modern allopathic system of medicine and suitable herbal preparations are to be investigated. A large number of plant preparations have been reported to possess antidiabetic activity over last several decades. Researchers in India have documented the use of over 150 plants in various families with hypoglycemic activity. [2]

Cassia occidentalis Linn. of family Caesalpiniaceae is a common weed scattered from foothills of Himalayas to West Bengal, South India, Burma, and Sri Lanka. The plant is a diffuse (usually annual) under shrub with loosely spreading branches 60-150 cm long, found throughout India, up to an altitude of 1500 m. [3] Different parts of this plant have been reported to possess anti-inflammatory, antihepatotoxic, [4] antibacterial, [5] and antiplasmodial activities. [6] They possess purgative, tonic, febrifugal, expectorant, and diuretic properties. The plant is also used to cure sore eyes, hematuria, rheumatism, typhoid, asthma, and disorder of hemoglobin and is also reported to cure leprosy. An infusion of the bark is given in diabetes. [3] A wide range of chemical constituents isolated from C. occidentalis including sennoside, anthraquinone glycoside, [7] fatty oils, flavonoid glycosides, galactomannan, polysaccharides, and tannins. [8]

In view of alleged antidiabetic potential of C. occidentalis, different extracts of the plant on fasting blood sugar levels and biochemical parameters such as serum cholesterol, total protein, and triglyceride were investigated. Histological examination was also carried out on pancreatic tissue of experimental animals.


 » Materials and Methods Top


Plant Material

The plant of C. occidentalis have been collected from Kaaripatti, Salem district, Tamil Nadu, with the help of field botanist. The plant of C. occidentalis have been authenticated by Prof. A. Balasubramanion, horticulturist, director of ABS Botanical Conservation, Research and Training Centre, Kaaripatti, Salem district, Tamil Nadu, India (Ref. ABSRTC/08/A-4069). The whole plant was dried initially under shade. It was preserved in a tightly closed container and powdered as per requirements.

Preparations of Extracts


The dried whole plant was subjected to size reduction to a coarse powder by using dry grinder and passed through sieve. About 150 g of this powder was packed into soxhlet apparatus and extracted successively with petroleum ether, chloroform, and water (yield 1.61%, 1.84%, 1.2%, respectively). The solvent was recovered by distillation in vacuo and extracts were stored in desiccator and used for subsequent experiments.

Preliminary Phytochemical Screening


Extracts obtained from C. occidentalis were subjected to various qualitative tests for the identification of various plant constituents present in this species. [9]

Animals


Healthy adult male Wistar albino rats between 2 and 3 months of age and weighing about 150-200 g were used for the study. The animals were housed in polypropylene cages, maintained under standard conditions (12 h light: 12 h dark cycle; 25 &177; 30C; 35-60% humidity). They were fed with standard rat pellet diet (Hindustan Lever Ltd., Mumbai, India) and water ad libitum. The Institutional Animal Ethical Committee of VNS, Bhopal (M.P.), India (778/03/c/CPCSEA), approved the study.

Sample Collection


Blood samples were collected by the retro-orbital plexus puncture method from overnight fasted rats under light ether anesthesia and blood glucose levels were estimated using Accu-chek Active TM glucose strips in Accu-chek Active TM Test Meter.

Acute Toxicity Study


Normal healthy rats were divided into five groups of six animals each. Different doses (100, 250, 500, 750 and 1000 mg/kg body weight) of different extracts (petroleum ether, chloroform and aqueous extract) of plant C. occidentalis were administered orally. The rats were observed continuously for 2 h for behavioral, neurological, and autonomic profiles and after 24 and 72 h for any lethality. [10]

Assessment of Extracts of C. occidentalis on Normal Fasted Rats

For the normoglycemic study, rats were divided into five groups (n=6) and were administered 2% gum acacia solution, metformin (0.5 g/kg), [11] petroleum ether extract, chloroform extract, and aqueous extract (200 mg/kg each), respectively. The blood glucose levels were measured just prior to and 2, 4, and 6 h after drug administration. [12]

Assessment of Extracts of C. occidentalis on Alloxan-Induced Diabetic Rats

Diabetes was induced in rats by injecting 120 mg/kg of alloxan monohydrate intraperitoneally in 0.9% w/v NaCl to over-night fasted rats. The rats were then kept for the next 24 h on 10% glucose solution bottles, in their cases to prevent hypoglycemia. [13] After 72 h of injection, rats with marked hyperglycemia (fasting blood glucose > 250 mg/dl) were selected and used for the study. The selected diabetic animals were divided into five groups (n = 6). And one more group of normal non-alloxanized animals was also added in the study. Group I (normal control or non-alloxanized rats) and group II (untreated diabetic control rats) received a single oral dose of 0.5 ml/100g of the vehicle; group III diabetic rats were treated orally with metformin (0.5 g/kg) as reference drug. Groups IV, V, and VI were treated orally with petroleum ether, chloroform, and aqueous extract at the dose 200 mg/kg, respectively. Fasting blood glucose estimation was done at 0, 2, 4, and 6 h after treatment. Treatment was continued for 21 consecutive days. The fasting blood glucose levels were estimated on days 0, 1, 7, 14, and 21. [14]

Estimation of Biochemical Parameters

On day 21, blood was collected from retro-orbital plexus of the overnight fasted rats under light ether anesthesia and kept aside for ½h for clotting. Serum was separated by centrifuging the sample at 6000 rpm for 20 min. The serum was analyzed for total protein (Biuret method), [15] cholesterol (CHOD-PAP method), [16] and triglyceride (GPO method). [17]

Histopathological Studies

Pancreatic tissues from all groups were subjected to histopathological studies. The whole pancreas from each animal was removed after sacrificing the animal under anesthesia and was collected in 10% formalin solution and immediately processed by the paraffin technique. Sections of 5 μm thickness were cut and stained by hematoxylin and eosin (H and E) for histological examination. [18]

Statistical analysis

All the values of body weight, fasting blood sugar, and biochemical estimations were expressed as mean ± standard error of mean (S.E.M.). The results are analyzed for statistical significance using one-way ANOVA followed by Dunnett's test. P < 0.05 was considered significant.


 » Results Top


Preliminary Phytochemical Screening

Preliminary phytochemical screening of the extract of C. occidentalis revealed the presence of alkaloids, glycosides, proteins and amino acids, sterols, carbohydrates, phenolic compounds, flavonoids, saponins, and tannins.

Acute Toxicity Studies

All aqueous-treated rats showed no discernible behavioral changes up to 500 mg/kg by oral route. No mortality was observed at this dose during 72 h observation period.

Antihyperglycaemic activity screening in normal and alloxan induced diabetic rats

The antidiabetic effects of various extracts of C. occidentalis on the fasting blood sugar level of normal and diabetic rats are is shown in [Table 1] and [Table 2]. In normal animals, significant (P<0.05, P<0.01) reduction in the blood glucose level was observed by the aqueous extract as compared to the control [Table 1]. However, treatment of petroleum ether and chloroform extract of C. occidentalis could not bring back the sugar to normal levels.
Table 1 :The effect of various extracts of C. occidentalis on blood glucose level in normal rats.

Click here to view
Table 2 :Effect of various extracts of C. occidentalis on blood glucose level in alloxan (120 mg/kg i.p.)-induced diabetic rats.

Click here to view


Acute and chronic treatment of the aqueous extract of C. occidentalis (200 mg/kg) in alloxan-induced diabetic rats resulted in a significant (P<0.01) decrease in the elevated blood glucose levels as compared to the control. Acute treatment of petroleum ether and chloroform extract of C. occidentalis could not bring back the sugar to normal levels. However in repeated dose treatment, petroleum ether extract showed significant anti-hyperglycemic activity from day 14 and chloroform extract showed significant anti-hyperglycemic activity from day 7.

Biochemical Parameters

Significant differences were observed in serum lipid profiles (cholesterol and triglyceride) and serum protein [Table 3] in aqueous extract (200 mg/kg)-treated diabetic animals, when compared with the diabetic control and normal animals (P < 0.01).
Table 3 :Effects of Aqueous extract of C. occidentalis on some biochemical parameters in alloxan-induced diabetic rats.

Click here to view


Histopathological studies

[Figure 1](A-D) depicts the islets of the pancreas of rats in different groups. Photomicrographs (A) of the normal healthy control group showed normal acini and normal cellular population of the  Islets of Langerhans More Details. However, in the alloxan only treated rats, there was extensive damage of the islets of Langerhans and they appeared to be irregular (B). Treatment of diabetic rats with metformin showed moderate expansion of cellular population and size of islet cells (C). However, aqueous extract (200 mg/kg) treated-diabetic rats showed partial restoration of normal cellular population and size of islet cells (D).
Figure 1 :(A) Photomicrographs of normal healthy control group rat showing normal globules of acini with normal islet cells (NIC), stained with hematoxylin and eosin. (B) Photomicrographs of diabetic control group rat showing damaged islet cells (DIC) stained with haematoxylin and eosin. (C) Photomicrographs of standard (metformin 0.5 g/mg) treated group rat showing moderate expansion of islet cells (MEIC),
stained with hematoxylin and eosin. (D) Photomicrographs of Aq extract (200 mg/kg)-treated group rat showing partial restoration of islet cells (PRIC) stained with hematoxylin and eosin (400X).


Click here to view



 » Discussion Top


In light of the results, our study indicates that aqueous extract of C. occidentalis exhibited significant anti-hyperglycemic activity in normal and alloxan-induced hyperglycemic rats. In normal rats, administration of aqueous extract showed 6.50%, 10.29%, and 7.21% decline in the blood glucose levels on 2, 4, and 6 h, respectively. Alloxan-induced diabetic rats administered with aqueous extract showed 4.15%, 6.52%, and 8.56% decline in the blood glucose level on 2, 4, and 6 h, respectively, whereas they showed 12.63%, 22.38%, 30.41%, and 38.19% decline in the blood glucose level on 1, 7, 14, and 21 day, respectively. They can also improve the condition of diabetes as indicated by parameters like serum cholesterol, serum triglyceride, and total protein.

It is now established that there is a gradual decrease in beta-cell function and mass that may occur in individuals at high risk of developing type II diabetes. To prevent the loss of beta-cell function and mass, beta-cell stabilization or regeneration must occur. [19] The renewal of β-cells in diabetes has been studied in several animal models. For example epicatechin has been shown to act by β-cell regeneration. [20] Similarly Vinca rosea extracts also cause regeneration of β-cell in alloxan-induced diabetic rats. [21]

Progression of type II diabetes is mainly due to loss of pancreatic β-cell function, which results in increased impairment of patient's ability to produce insulin in response to increased blood glucose. Metformin directly improves insulin action and is effective only in the presence of insulin. [22] It is to be seen whether the antidiabetic effect of C. occidentalis may be due to increased insulin secretion, similar to that observed in metformin.

In our studies, damage of pancreas was observed in alloxan-treated diabetic control rats [Figure 1] B. The metformin-treated group showed regeneration of β-cells [Figure 1]C. The comparable regeneration was also shown by aqueous extracts of C. occidentalis [Figure 1] D. Photomicrographs reinforce healing of pancreas by the aqueous extract of C. occidentalis, as a plausible mechanism of their antidiabetic activity. The antidiabetic activity of C. occidentalis may be due to the presence of flavonoids. It is reported that flavanoids constitute the active biological principles of most medicinal plants with hypoglycemic and antidiabetic properties. [23] However the extract should further be subjected to bioactivity-guided drug discovery to isolate the lead compound responsible for antidiabetic activity and possible mechanisms(s) of action.

In conclusion, C. occidentalis exhibited significant antihyperglycemic activities in normal and alloxan-induced diabetic rats. The aqueous extract of C. occidentalis also showed improvement in lipid profile as well as regeneration of β-cell of pancreas and so might be of value in treatment of diabetes.

 
 » References Top

1.Barar FS. Essentials of Pharmacotherapeutics. 3 rd ed. New Delhi: S. Chand and Company Ltd; 2004. p.340.  Back to cited text no. 1      
2.Patel PM, Patel KN, Patel NM, Goyal RK. Development of HPTLC method for estimation of charantin in herbal formulations. Pharmacog Mag 2006;8:224-6.  Back to cited text no. 2      
3.The Wealth of India. A dictionary of Indian Raw Material and Industrial Products. New Delhi: Council of Scientific and Industrial Research; 1998. p. 350.  Back to cited text no. 3      
4.Saraf S, Dixit VK, Tripathi SC, Patnaik GK. Antihepatotoxic Activity of Cassia occidentalis. Pharm Biol 1994;32:178-83.  Back to cited text no. 4      
5.Samy RP, Ignacimuthu S. Antibacterial activity of some folklore medicinal plants used by tribals in Western Ghats of India. J Ethnopharmacol 2000;69:63-71.  Back to cited text no. 5  [PUBMED]  [FULLTEXT]  
6.Tona L, Cimanga RK, Mesia K, Musuamba CT, De Bruyne T, Apers S, et al. In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in the Democratic Republic of Congo. J Ethnopharmacol 2004;93:27-32.   Back to cited text no. 6  [PUBMED]  [FULLTEXT]  
7.Lal J, Gupta PC. Two new anthraquinones from the seeds of Cassia occidentalis. Experientia 1974;30:850-1.  Back to cited text no. 7      
8.Kudav NA, Kulkarni AB. Chemical investigation of Cassia occidentalis. Indian J Chem 1974;12:1042-4.  Back to cited text no. 8      
9.Harborne JB. Phytochemical Methods. London: Chapman and Hall; 1998. p. 60-6.  Back to cited text no. 9      
10.Turner MA. Screening methods in Pharmacology. New York: Academic Press; 1965. p. 26.  Back to cited text no. 10      
11.Trivedi NA, Mazumdar B, Bhatt JD, Hemavathi KG. Effect of shilajit on blood glucose and lipid profile in alloxan induced diabetic rats. Indian J pharmacol 2004;36:373-6.  Back to cited text no. 11    Medknow Journal  
12.Somani R, Kasture S, Singhai AK. Antidiabetic potential of Butea monosperma in rats. Fitoterapia 2006;77:86-90.  Back to cited text no. 12  [PUBMED]  [FULLTEXT]  
13.Jarald EE, Joshi SB, Jain DC. Antidiabetic activity of aqueous extract and non polysaccharide fraction of Cynodon dactylon Pers. Indian J Exp Biol 2008;46:660-7.  Back to cited text no. 13  [PUBMED]    
14.Nagappa AN, Thakurdesai PA, Venkat RN, Singh J. Antidiabetic activity of Terminalia catappa Linn fruits. J Ethnopharmacol 2003;88:45-50.  Back to cited text no. 14      
15.Burkhardt RT, Batsakis JC. An interlaboratory comparison of serum total protein analysis. Am J Clin Pathol 1978;70:508-10.  Back to cited text no. 15      
16.Pierre NM, Demaekerl A, Marja H, Helga TD, Henk B. Precipitation methods for high density lipo-protein cholesterol measurement compared, and final evaluation under routine operating conditions of a method with a low sample-to-reagent ratio. Clin Chem 1997;43:663-8.  Back to cited text no. 16      
17.MeGown MW, Artiss JD, Strandberg DR, Zak B. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem 1983;29:538-42.   Back to cited text no. 17      
18.Luna LC. Manual of histological screening methods of Armed Forces Institute of Pathology. New York: Mc Graw Hill Book Co; 1990. p. 125.  Back to cited text no. 18      
19.Henry RR. Resurrecting the Beta Cell in Type 2 Diabetes: Clinical Impact of Therapies Directed at Beta-cell Preservation 2006.  Back to cited text no. 19      
20.Chakravarthy BK, Gupta S, Gode KD. Functional beta cell regeneration in the islets of pancreas in alloxan induced diabetic rats by (-)-epicatechin. Life Sci 1982;31:2693-7.  Back to cited text no. 20  [PUBMED]    
21.Ghosh S, Suryawanshi SA. Effect of Vinca rosea extracts in treatment of alloxan diabetes in male albino rats. Indian J Exp Biol 2001;39:748-59.  Back to cited text no. 21  [PUBMED]    
22.Bailey CJ. Biguanides and NIDDM. Diabetes Care 1992;15:755-72.  Back to cited text no. 22  [PUBMED]    
23.Wollenweber LE, Cody V, Middleton EJ, Harborne JB, Beretz A. Plant flavanoids in biology and medicineII: Biochemical, cellular and medicinal properties. Prog Clin Biol Res 1988;280:1-461.  Back to cited text no. 23      


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]

This article has been cited by
1 Ethnobotanical, phytochemical, toxicology and anti-diabetic potential of Senna occidentalis (L.) link; A review
Adeline Lum Nde, Chika I. Chukwuma, Ochuko L. Erukainure, Maria S. Chukwuma, Motlalepula G. Matsabisa
Journal of Ethnopharmacology. 2022; 283: 114663
[Pubmed] | [DOI]
2 Pharmacological potential of ants and their symbionts – a review
Surbhi Agarwal, Garima Sharma, Kavita Verma, Narayanan Latha, Vartika Mathur
Entomologia Experimentalis et Applicata. 2022;
[Pubmed] | [DOI]
3 De novo Transcriptome Assembly of Senna occidentalis Sheds Light on the Anthraquinone Biosynthesis Pathway
Sang-Ho Kang, Woo-Haeng Lee, Joon-Soo Sim, Niha Thaku, Saemin Chang, Jong-Pil Hong, Tae-Jin Oh
Frontiers in Plant Science. 2022; 12
[Pubmed] | [DOI]
4 Anti-Hyperglycemic effect of Polyherbal Formulation in Glucose Loaded and Epinephrine Induced Hyperglycemic Wistar rats
Vikas B Gawali, Niraj S Vyawahare
Research Journal of Pharmacy and Technology. 2022; : 365
[Pubmed] | [DOI]
5 Annona muricata L. extract decreases intestinal glucose absorption and improves glucose tolerance in normal and diabetic rats
Ana María Guevara-Vásquez, Julio Víctor Campos-Florián, Jesús Haydee Dávila-Castillo
Journal of Herbmed Pharmacology. 2021; 10(3): 359
[Pubmed] | [DOI]
6 Antidiabetic effect of aqueous stem bark extract of Parinari macrophylla in alloxan-induced diabetic Wistar rats
Ahmad Alhassan Ibrahim, Muhammed Sani Abdussalami, Joseph Appah, Abdullahi Hussein Umar, Aminu Alhassan Ibrahim, Kabiru Dawaki Dauda
Future Journal of Pharmaceutical Sciences. 2021; 7(1)
[Pubmed] | [DOI]
7 The genus Cassia L.: Ethnopharmacological and phytochemical overview
Muhammad Khurm, Xingbin Wang, Hui Zhang, Sajid Nawaz Hussain, Muhammad Naeem Qaisar, Khezar Hayat, Fatima Saqib, Xinxin Zhang, Guanqun Zhan, Zengjun Guo
Phytotherapy Research. 2021; 35(5): 2336
[Pubmed] | [DOI]
8 Physiochemical, Insecticidal, and Antidiabetic Activities of Senna occidentalis Linn Root
Tahani Osman Issa, Ahmed Ibrahim Mohamed Ahmed, Yahya Sulieman Mohamed, Sakina Yagi, Abdelrafie Mohamed Makhawi, Tarig Osman Khider
Biochemistry Research International. 2020; 2020: 1
[Pubmed] | [DOI]
9 Molecular identification of Trypanosoma brucei brucei and in vitro anti-trypanosomal activity of different parts of methanolic extract of Senna occidentalis
Zainab Aliyu Alhafiz, Mohammed Sani Abdulsalami, Mohammed Auwal Ibrahim, Timothy Bulus, Ahmed Babangida Suleiman
Clinical Phytoscience. 2020; 6(1)
[Pubmed] | [DOI]
10 Pancreatic ß-cell regeneration: From molecular mechanisms to therapy
Roozbeh Akbari Motlagh, Shabnam Mohebbi, Maryam Moslemi, Parnia Jabbari, Arezoo Alizadeh, Rajab Mardani, Seyed Mohammad Gheibi hayat
Journal of Cellular Biochemistry. 2019; 120(9): 14189
[Pubmed] | [DOI]
11 Larvicidal Activity of Cassia occidentalis (Linn.) against the Larvae of Bancroftian Filariasis Vector Mosquito Culex quinquefasciatus
Deepak Kumar,Rakesh Chawla,P. Dhamodaram,N. Balakrishnan
Journal of Parasitology Research. 2014; 2014: 1
[Pubmed] | [DOI]
12 Effects of Brown Seaweed (Sargassum polycystum) Extracts on Kidney, Liver, and Pancreas of Type 2 Diabetic Rat Model
Mahsa Motshakeri,Mahdi Ebrahimi,Yong Meng Goh,Hemn Hassan Othman,Mohd Hair-Bejo,Suhaila Mohamed
Evidence-Based Complementary and Alternative Medicine. 2014; 2014: 1
[Pubmed] | [DOI]
13 Antidiabetic, antilipidemic, and antioxidant activities ofGouania longipetalamethanol leaf extract in alloxan-induced diabetic rats
Maxwell Ikechukwu Ezeja,Aruh Ottah Anaga,Isaac U. Asuzu
Pharmaceutical Biology. 2014; : 1
[Pubmed] | [DOI]
14 The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations
Udoamaka F. Ezuruike,Jose M. Prieto
Journal of Ethnopharmacology. 2014;
[Pubmed] | [DOI]
15 Hypoglycemic Effect of Hazelnut and its Effect on Some Sex Hormones in Alloxan Induced Diabetic in Female Rats
Abeer, E. El-Kham,Amr, A. Rezq
Pakistan Journal of Nutrition. 2013; 12(3): 229
[Pubmed] | [DOI]
16 Management of diabetic complications: A chemical constituents based approach
Randhir Singh,Navpreet Kaur,Lalit Kishore,Girish Kumar Gupta
Journal of Ethnopharmacology. 2013; 150(1): 51
[Pubmed] | [DOI]
17 An evaluation of Antihyperglycemic and antinociceptive effects of methanol extract of cassia fistula l. (Fabaceae) leaves in Swiss albino mice
Khan, Z.I., Nahar, B., Jakaria, M.A., Rahman, S., Chowdhury, M.H., Rahmatullah, M.
Advances in Natural and Applied Sciences. 2010; 4(3): 305-310
[Pubmed]



 

Top
Print this article  Email this article

    

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow