IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 6375 
Small font sizeDefault font sizeIncrease font size
Navigate Here
 » Next article
 » Previous article 
 » Table of Contents
Resource Links
 »  Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »  Article in PDF (204 KB)
 »  Citation Manager
 »  Access Statistics
 »  Reader Comments
 »  Email Alert *
 »  Add to My List *
* Registration required (free)

In This Article
 »  Abstract
 »  Introduction
 »  Materials and Me...
 »  Results
 »  Discussion
 »  Acknowledgements
 »  References
 »  Article Figures
 »  Article Tables

 Article Access Statistics
    PDF Downloaded871    
    Comments [Add]    
    Cited by others 25    

Recommend this journal


Year : 2008  |  Volume : 40  |  Issue : 5  |  Page : 230-234

Antibiotic susceptibility patterns of Pseudomonas aeruginosa at a tertiary care hospital in Gujarat, India

1 Shri Swaminarayan Sanskar Pharmacy College, Zundal, Ahmadabad, India
2 Department of Pharmacology, Institute of Pharmacy, Nirma University of Science and Technology, Ahmedabad, India
3 Department of Pharmacology, Rajasthan Hospitals, Ahmadabad, India

Date of Submission03-Nov-2007
Date of Decision25-Aug-2008
Date of Acceptance14-Oct-2008

Correspondence Address:
Jagruti A Patel
Department of Pharmacology, Institute of Pharmacy, Nirma University of Science and Technology, Ahmedabad
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0253-7613.44156

Rights and Permissions

 » Abstract 

Objectives: The present study was undertaken to assess the antibiotic susceptibility patterns of Pseudomonas aeruginosa at a tertiary care hospital in Gujarat, India. Due to significant changes in microbial genetic ecology, as a result of indiscriminate use of anti-microbials, the spread of anti-microbial resistance is now a global problem.
Materials and Methods: Out of 276 culture positive samples, 56 samples of Pseudomonas aeruginosa were examined and 10 different types of specimen were collected. Microbial sensitivity testing was done using disk diffusion test with Pseudomonas species NCTC 10662, as per CLSI guidelines.
Results: The highest number of Pseudomonas infections was found in urine, followed by pus and sputum. Pseudomonas species demonstrated marked resistance against monotherapy of penicillins, cephalosporins, fluoroquinolones, tetracyclines and macrolides. Only combination drugs like Ticarcillin + Clavulanic acid, Piperacillin + Tazobactum, Cefoperazone + Sulbactum, Cefotaxime + Sulbactum, Ceftriaxome + Sulbactum and monotherapy of amikacin showed higher sensitivity to Pseudomonas infections; however, the maximum sensitivity was shown by the Carbapenems.
Conclusion: From the present study, we conclude that urinary tract infection was the most common hospital acquired infection. Also, co-administration of β -lactamase inhibitors markedly expanded the anti-microbial sensitivity of semi-synthetic penicillins and cephalosporins. The aminoglycoside group of antibiotics - amikacin - demonstrated maximum sensitivity against pseudomonas species. Therefore, use of amikacin should be restricted to severe nosocomial infections, in order to avoid rapid emergence of resistant strains. Periodic susceptibility testing should be carried out over a period of two to three years, to detect the resistance trends. Also, a rational strategy on the limited and prudent use of anti-Pseudomonal agents is urgently required.

Keywords: Antimicrobial susceptibility, carbapenem sensitivity, combination antibiotics, disk diffusion technique, Pseudomonas aeruginosa

How to cite this article:
Javiya VA, Ghatak SB, Patel KR, Patel JA. Antibiotic susceptibility patterns of Pseudomonas aeruginosa at a tertiary care hospital in Gujarat, India. Indian J Pharmacol 2008;40:230-4

How to cite this URL:
Javiya VA, Ghatak SB, Patel KR, Patel JA. Antibiotic susceptibility patterns of Pseudomonas aeruginosa at a tertiary care hospital in Gujarat, India. Indian J Pharmacol [serial online] 2008 [cited 2023 Sep 24];40:230-4. Available from: https://www.ijp-online.com/text.asp?2008/40/5/230/44156

 » Introduction Top

Multiple antibiotic resistance in bacterial populations is a pervasive and growing clinical problem, which is recognized as a threat to public health. Hence, there is a need to conduct area-specific monitoring studies to profile different pathogens responsible for specific infections and their resistance patterns, so as to generate data that would help clinicians to choose the correct empirical treatment.

 Pseudomonas aeruginosa Scientific Name Search . aeruginosa) is an epitome of opportunistic nosocomial pathogen, which causes a wide spectrum of infections and leads to substantial morbidity in immuno-compromised patients. Despite therapy, the mortality due to nosocomial pseudomonal pneumonia is approximately 70%. [1] Unfortunately, P. aeruginosa demonstrates resistance to multiple antibiotics, thereby jeopardizing the selection of appropriate treatment. [2] Therefore, the present study was undertaken to find out the antibiotic susceptibility patterns of pathogenic isolates of Pseudomonas aeruginosa from various specimens of hospital acquired infections (HAI).

 » Materials and Methods Top

Our study group comprised of samples, which were clinically suspected cases of bacterial infections. The project was undertaken at Rajasthan Hospital, Ahmedabad, India, between January and April 2006.

Five hundred and seventy two non-duplicate isolates were taken (i.e. multiple isolates of the same species from the same patient were excluded). Two hundred and seventy six samples obtained from sputum, endo-tracheal Tract secretion, broncho-alveolar lavage, blood, urine, body tissues, pus, semen, cerebro-spinal fluid (CSF), and body fluids (peritoneal fluid) and costal bronchial Secretions (CBS) reported the presence of bacterial infection.

Identification of all isolates was carried out by a positive reaction to oxidase and production of pyocyanin. [3] Culture examination was carried out using Nutrient agar and MacConkey´s medium, followed by inoculation by four flame streak method.

Antibiotic susceptibility was confirmed by disk diffusion technique on Muller-Hinton medium (Becton Dickinson Microbiological Systems, Cockysville, MD), performed according to the Clinical Laboratory Standard Institute (CLSI) guidelines. [3] Paper disks (Hi-media, Mumbai) were impregnated with antibiotics (Sigma Chemical Co., St. Louis, Mo.): Penicillins: ampicillin (10mcg), amoxycillin (20mcg), ticarcillin (75mcg), piperacillin (100mcg); cephalosporins: cephalexin (30 mcg), cefuroxime (30mcg), cefazolin (30mcg), cefotaxime (30mcg), ceftriaxone (30mcg), ceftazidime (30mcg), ceftizoxime (30mcg), cefoperazone (75 mcg), cefpodoxime 10 mcg), cefdinir (5 mcg), cefepime (30 mcg); carbepenems: imipenem (10mcg), meropenem (10 mcg); monobactums: aztreonem (30 mcg); combinations: ampicillin + sulbactum (10/10 mcg), amoxycillin + clavulinic acid (20/10 mcg), piperacillin + tazobactum (100/10 mcg), ticarcillin + clavulinic acid (75/10 mcg), cefoperazone + sulbactum (75/10 mcg), cefotaxime + sulbactum (30/10 mcg), ceftriaxone + sulbactum (30/10 mcg); Aminoglycosides: gentamicin (10 mcg), tobramycin (10 mcg), amikacin (30 mcg), netilmicin (30 mcg); quinolones: ciprofloxacin (5mcg), ofloxacin (5mcg), levofloxacin (5mcg), gatifloxacin (5mcg); tetracyclines: doxycycline (30mcg), minocycline (30mcg); macrolides: azithromycin (15mcg) and miscellaneous: chloramphenicol (30 mcg) respectively. They were incubated overnight at 37°C in 5-10% CO 2 enriched environment (candle jar). The diameter of the zone of inhibition was measured and compared to that of standard strain and the results were interpreted as sensitive, intermediate resistant or resistant, based on CLSI guidelines. [4] The category "susceptible" was defined as identification of a strain as susceptible by the disk diffusion method. Quality control strains of Pseudomonas species NCTC-10662 was used to validate the results of the antimicrobial discs.

Susceptibility data were compared by using a Chi-square test with statistical package for the social sciences (SPSS) software for Windows, version 12. Both susceptibility and resistance were calculated as percentages with 95% confidence intervals. The analysis was performed on the cross-tabulated values of the presence of the resistant/intermediate/susceptible isolates, according to the categories of the selected variable. A P value of <0.05 was considered to be statistically significant.

 » Results Top

Of the 572 samples subjected to culture sensitivity, 276 reported presence of bacterial infection, thereby suggesting 48.25% as the occurrence level. The percentage occurrence of Pseudomonas in these 276 samples was only 20.28% (56 samples), of which 62.5% (i.e. 35 samples) and 37.5% (i.e. 21 samples) were reported from males and females respectively. Various specimens studied under the present investigation included urine, pus, sputum, blood, endotracheal secretions (ET), semen, catheter tip (CT), stool, body fluids and body tissues. The age- and gender-wise percentage and frequency of the pathogenic organism ( P. aeruginosa) are mentioned in [Table 1].

The majority of specimens from which P. aeruginosa was isolated consisted of urine, pus and sputum [Table 2]. The acid resistant penicillins such as ticarcillin and piperacillin combinations (R=23.21% and 30.36% respectively) ( P<0.001) had significantly greater antibacterial activity against P. aeruginosa , when compared to their respective monotherapies (R=67.86% and 73.21% respectively) [Figure 1A].

A similar scenario was observed for ampicillin and amoxicillin, where the combination therapy with sulbactum and clavulanic acid ( P<0.001) demonstrated significantly higher antibacterial activity against P. aeruginosa , when compared to their respective monotherapies (R=98.21% in both the cases) [Figure 1B]. The organism showed remarkable resistance against cephalosporin group of antibiotics, ranging from 67.86% for ceftazidime to 94.64% for cephalexin [Table 3]. But the extended-spectrum penicillins and the third generation cephalosporins, in combination with sulbactum, tazobactum and clavulanic acid showed a significant decrease in resistance to P. aeruginosa .

A notable observation was that piperacillin and ticarcillin combinations demonstrated better antibacterial activity, as compared to cephalosporin combinations ( P<0.001) [Figure 1A] and [Figure 1B]. We observed that P. aeruginosa was highly sensitive to the carbapenem group of antibiotics like imipenem (78.57%) and meropenem (69.64%), while aztreonem showed 71.43% resistance ( P<0.001) [Figure 1C]. On the other hand, aminoglycosides, fluoroquinolones, tetracyclines, macrolides and chloramphenicol did not demonstrate statistically significant susceptibility patterns ( P >0.05).

In the present study, sensitivity of P. aeruginosa was in the 32-48% range for aminoglycosides, while for fluoroquinolones, susceptibility was found to be in the 26-37% range [Table 4]. For tetracyclines, macrolides and chloramphenicol, resistance was found to range between 75 and 91% [Table 4]. All antibiotics used as monotherapy in the present study did not demonstrate statistically significant susceptibility patterns ( P >0.05), with the exception of imipenem and meropenem.

 » Discussion Top

P. aeruginosa is inherently resistant to many antimicrobial agents, mainly due to the synergy between multi-drug efflux system or a type1 AmpC b-lactamase and low outer membrane permeability. [5],[6],[7] The age- and sex-wise distribution of patients diagnosed with infection followed the natural epidemiological pattern. [8] Out of 56 culture positive specimens isolated, 26.78% were urine samples, indicating that urinary tract infection (UTI) is the most common HAI [9] [Table 2]. It is one of the most important causes of morbidity in the general population and is the second most common cause of hospital visits. [10],[11] The incidence of UTI is greater in women than men, which may be either due to anatomical predisposition or urolithial mucosal adherence to mucopolysaccharide lining or other host factors.[9],[12] Concurrent administration of a β-lactamase inhibitor such as clavulanate or sulbactum markedly expands the spectrum of activity of acid resistant penicillins like ticarcillin and piperacillin. The dose as well as the incidence of toxicity were subsequently reduced with semi-synthetic penicillins like ticarcillin, which makes it the preferred ureidopenicillin against P. aeruginosa infections. Our results are in corroboration with the one reported by other workers, [11] so much so that the overall resistance to various generations of cephalosporins was high on account of the production of extended spectrum β-lactamses (ESBLs) by the bacteria involved. [13]

In our study, notable resistance (19.64%) to P. aeruginosa was observed against carbapenems. The resistance to carbapenems, especially in P. aeruginosa , results from reduced levels of drug accumulation or increased expression of pump efflux. [14],[15] The resistance may also be due to the production of metallo-β-lactamases (MBL), which can be chromosomally encoded or plasmid mediated. [16] The carbapenem hydrolyzing enzyme carbapenamase may be class B-metallo β-lactamases or class D-oxacillanases or class A-clavulanic acid inhibitory enzymes. [17]

Among the aminoglycosides, amikacin has the highest sensitivity against P. aeruginosa [Table 4], which is in corroboration with an earlier report published from India. [18] Amikacin was designed as a poor substrate for the enzymes that bring about inactivation by phosphorylation, adenylation or acetylation, but some organisms have developed enzymes that inactivate this agent as well. Amikacin seems to be a promising therapy for Pseudomonal infection. Hence, its use should be restricted to severe nosocomial infections, in order to avoid rapid emergence of resistant strains. [19] The problem of increasing resistance to P. aeruginosa has limited the use of other classes of antibiotics like the fluoroquinolones, tetracyclines, macrolides and chloramphenicol. [20]

In fact, the irrational and inappropriate use of antibiotics is responsible for the development of resistance of Pseudomonas species to antibiotic monotherapy. Hence, there is a need to emphasize the rational use of antimicrobials and strictly adhere to the concept of "reserve drugs" to minimize the misuse of available antimicrobials. In addition, regular antimicrobial susceptibility surveillance is essential for area-wise monitoring of the resistance patterns. An effective national and state level antibiotic policy and draft guidelines should be introduced to preserve the effectiveness of antibiotics and for better patient management.

Hence, based on the observations of present study, we recommend use of either semi-synthetic penicillins like ticarcillin, piperacillin or third generation cephalosporins like cefoperazone, cefotaxime and ceftriaxone along with b-lactamase inhibitors (clavulanate or sulbactum) against Pseudomonas species infections, in similar hospital settings. Further, amikacin should be considered as a reserved drug for the treatment of severe nosocomial infections.

 » Acknowledgements Top

The authors wish to thank Dr. Mitesh Patel, M.D. (Microbiology), Assistant Professor, B.J. Medical College and Civil Hospital, Ahmedabad and Dr. Atit Shah, M.D. (Microbiology), Assistant Professor, Smt. NHL Municipal Medical College and V. S. Hospital, Ahmedabad for extending their help and guidance in conducting the microbiological analysis for the present study.

 » References Top

1.Chastre J, Trouillet JL. Problem pathogens (Pseudomonas aeruginosa and Acinetobacter). Semin Respir Infect 2000;15:287-98.  Back to cited text no. 1    
2.Obritsch MD, Fish DN, McLaren R, Jung R. National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa isolates obtained from Intensive Care Unit Patients from 1993 to 2002. Antimicrob Agents Chem 2004;48:4606-10.  Back to cited text no. 2    
3.Genηer S, Ak O, Benzonana N, Batirel A, Ozer S. Susceptibility pattern and cross resistances of antibiotics against Pseudomonas aeruginosa in a teaching hospital of Turkey. Ann Clin Microbiol Antimicrob 2002;1:2.  Back to cited text no. 3    
4.National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests. Approved standard M2 A7 NCCLS, Villanova, PA: 1995. p. 15.  Back to cited text no. 4    
5.Das RN, Chandrasekhar TS, Joshi HS, Gurung M, Shrestha N, Shivananda PG. Frequency and susceptibility profile of pathogens causing urinary tract infections at a tertiary care hospital in western Nepal. Singapore Med J 2006;47:281-5.  Back to cited text no. 5    
6.Hancock RE. Resistance mechanisms in Pseudomonas aeruginosa and other non-fermentive gram negative bacteria. Clin Infect Dis 1998;27:S93-9.  Back to cited text no. 6    
7.Livermore DM. Of Pseudomonas aeruginosa, porins and Carbapenems. J Antimicrob Chemother 2001;47:247-50.   Back to cited text no. 7    
8.Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002;34: 634-40.   Back to cited text no. 8    
9.Tambekar DH, Dhanorkar DV, Gulhane SR, Khandelwal VK, Dudhane MN. Antibacterial susceptibility of some urinary tract pathogens to commonly used antibiotics. Afr J Biotech 2006;5:1562-5.  Back to cited text no. 9    
10.Navaneeth BV, Belwadi S, Suganthi N. Urinary pathogens resistant to common antibiotics: A retrospective analysis. Trop Doct 2002;32:20-2.  Back to cited text no. 10    
11.Chitnis SV, Chitnis V, Sharma N, Chitnis DS. Current status of drug resistance among gram negative bacilli isolated from admitted cases in a tertiary care centre. J Assoc Physicians India 2003;51:28-32.  Back to cited text no. 11    
12.Ronald AR, Pattulo MS. The natural history of urinary infection in adults. Med Clin North Am 1991;75:299-312.  Back to cited text no. 12    
13.Mathur P, Kapil A, Das B, Dhawan B. Prevalence of extended spectrum β-lactamase producing gram negative bacteria in a tertiary care hospital. Indian J Med Res 2002;115:153-7.  Back to cited text no. 13    
14.Gupta E, Mohanty S, Sood S, Dhawan B, Das BK, Kapil A. Emerging resistance to Carbapenems in a tertiary care hospital in North India. Indian J Med Res 2006;124:95-8.  Back to cited text no. 14    
15.Kurokawa H, Yagi T, Shibata N, Shibayama K, Arakawa Y. Worldwide proliferation of Carbapenem resistant gram negative bacteria. Lancet 1999;354:955.  Back to cited text no. 15    
16.Navneeth BV, Sridaran D, Sahay D, Belwadi MR. A preliminary study on metallo β- lactamase producing Pseudomonas aeruginosa in hospitalized patients. Indian J Med Res 2002;116:264-7.  Back to cited text no. 16    
17.Yu YS, Yang Q, Xu XW, Kong HS, Xu GY, Zhong BY. Typing and characterization of Carbapenem resistant Acinobacter calcoaceticus-baumannii complex in a Chinese hospital. J Med Microbiol 2004;53:653-6.   Back to cited text no. 17    
18.Smitha S, Lalitha P, Prajna VN, Srinivasan M. Susceptibility trends of Pseudomonas species from corneal ulcers. Indian J Med Microbiol 2005;23:168-71.  Back to cited text no. 18  [PUBMED]  Medknow Journal
19.Poole K. Aminoglycosides resistance in Pseudomonas aeruginosa. Antimicrob Agents Chem 2005;49:479-87.  Back to cited text no. 19    
20.Chambers HF. General Principles of antimicrobial therapy. In: Brunton LL, Lazo JS, Parker KL, editors. Goodman and Gilman's The Pharmacological Basis of Therapeutics. 11th ed. Mc-Graw Hill: Medical Publishing Division; 2006. p. 1095-110.  Back to cited text no. 20    


  [Figure 1A], [Figure 1B], [Figure 1C]

  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 Antibiotics resistance pattern of Pseudomonas aeruginosa isolated from different hospitals in Nowshera KPK Pakistan
Asif Iqbal, Iftikhar Ahmad, Sohail Ali, Rabia Khattak
Journal of Bacteriology & Mycology: Open Access. 2023; 11(1): 62
[Pubmed] | [DOI]
2 Antimicrobial Resistance Pattern of Pseudomonas aeruginosa: An 11-Year Experience in a Tertiary Care Hospital in Makkah, Saudi Arabia
Aiman M Momenah, Rafat Ahmed Bakri, Naif A Jalal, Sami S Ashgar, Rakan Fahad Felemban, Farkad Bantun, Sumyya H Hariri, Abeer A Barhameen, Hani Faidah, Hamdi M AL-Said
Infection and Drug Resistance. 2023; Volume 16: 4113
[Pubmed] | [DOI]
3 Nano-functionalization and evaluation of antimicrobial activity of Tinospora cordifolia against the TolB protein of Pseudomonas aeruginosa – An antibacterial and computational study
Himporna Nath, Ankita Khataniar, Kusum K. Bania, Nobendu Mukerjee, Sami A. Al-Hussain, Magdi E. A. Zaki, Sanchaita Rajkhowa
Frontiers in Microbiology. 2023; 14
[Pubmed] | [DOI]
4 Study of Antimicrobial Resistance, Biofilm Formation, and Motility of Pseudomonas aeruginosa Derived from Urine Samples
Telma de Sousa, Michel Hébraud, Olimpia Alves, Eliana Costa, Luís Maltez, José Eduardo Pereira, Ângela Martins, Gilberto Igrejas, Patricia Poeta
Microorganisms. 2023; 11(5): 1345
[Pubmed] | [DOI]
5 Antibacterial effect of Lignin Polymer on Multidrug Resistant Bacteria Identified by Vitek System
Safaa Hadi Hussein, Suhad Faisal Hatem Al-Mugdadi, Lec. Ali Jalil Mjali, Qabas Nather Latef, Zahraa Ahmed Okhti
Research Journal of Pharmacy and Technology. 2023; : 91
[Pubmed] | [DOI]
6 Evaluation of ß-lactamases and Molecular Typing of Pseudomonas aeruginosa Clinical Strains Isolated from Hospitalized Children in Tehran
Hossein Goudarzi, Narjess Bostanghadiri, Zahra Riahi Rad, Zohreh Riahi Rad, Javad Yasbolaghi Sharahi
Archives of Clinical Infectious Diseases. 2023; 18(2)
[Pubmed] | [DOI]
7 A molecular New Update on the Biofilm Production and Carbapenem Resistance Mechanisms in Clinical Pseudomonas aeruginosa Isolates
Raziyeh Ramazani, Rabeeh Izadi Amoli, Mojtaba Taghizadeh Armaki, Abazar Pournajaf, Hami Kaboosi
Iranian Journal of Medical Microbiology. 2022; 16(6): 557
[Pubmed] | [DOI]
8 Incidence and Molecular Characterization of Carbapenemase Genes in Association with Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa from Tertiary Healthcare Facilities in Southwest Nigeria
Oluwatoyin B. Olaniran, Olufemi E. Adeleke, Ahmed Donia, Ramla Shahid, Habib Bokhari
Current Microbiology. 2022; 79(1)
[Pubmed] | [DOI]
9 Prevalence, phenotypic and genotypic diversity, antibiotic resistance, and frequency of virulence genes in Pseudomonas aeruginosa isolated from shrimps
Seyed Majid Hashemi Dehkordi, Seyed Amirali Anvar, Ebrahim Rahimi, Hamed Ahari, Maryam Ataee
Aquaculture International. 2021;
[Pubmed] | [DOI]
10 Changing microbiological profile and antimicrobial susceptibility of the isolates obtained from patients with infective endocarditis – The time to relook into the therapeutic guidelines
Rama Gupta, Vandana Kaushal, Abhishek Goyal, Pawan Kumar, Dinesh Gupta, Rohit Tandon, Aashita Mahajan, Sonaal Singla, Gurbhej Singh, Bhupinder Singh, Shibba Takkar Chhabra, Naved Aslam, Gurpreet S. Wander, Veenu Gupta, Bishav Mohan
Indian Heart Journal. 2021;
[Pubmed] | [DOI]
11 Magnitude of post-urethroplasty urinary tract infections in children with hypospadias at a tertiary hospital in Kenya
Mutua Irene, Francis Osawa, Kihiko Kuria, Joel Lessan
Journal of Pediatric Urology. 2021; 17(4): 518.e1
[Pubmed] | [DOI]
12 Clinical Specimens are the Pool of Multidrug- resistant Pseudomonas aeruginosa Harbouring oprL and toxA Virulence Genes: Findings from a Tertiary Hospital of Nepal
Yamuna Chand, Sujan Khadka, Sanjeep Sapkota, Suprina Sharma, Santosh Khanal, Alina Thapa, Binod Rayamajhee, Dhruba Kumar Khadka, Om Prakash Panta, Dipendra Shrestha, Pramod Poudel, Piergiorgio Fedeli
Emergency Medicine International. 2021; 2021: 1
[Pubmed] | [DOI]
13 Comparative study of manual conventional blood cultures versus automated blood culture system in cases of septicemia
Humera Qudsia Fatima Ansari, Lubna Saher, Mustafa Afzal
Indian Journal of Microbiology Research. 2021; 8(4): 327
[Pubmed] | [DOI]
14 Evaluation of Antibiotic Tolerance in Pseudomonas aeruginosa for Aminoglycosides and Its Predicted Gene Regulations through In-Silico Transcriptomic Analysis
Abishek Kumar B, Bency Thankappan, Angayarkanni Jayaraman, Akshita Gupta
Microbiology Research. 2021; 12(3): 630
[Pubmed] | [DOI]
15 In vitro Antimicrobial Synergy Testing of Extensively Drug-Resistant Clinical Isolates at an Organ Transplant Center in Nepal
Rashmi Karki, Samir Lamichhane, Buddha Bahadur Basnet, Anuja Dahal, Bal Krishna Awal, Shyam Kumar Mishra
Infection and Drug Resistance. 2021; Volume 14: 1669
[Pubmed] | [DOI]
16 Molecular Analysis of Pathogenic Genes (lasB and exoA) in Pseudomonas aeruginosa Strains Isolated from Animal and Human Samples and Determination of Their Resistance Pattern
Ciamak Ghazaei
Journal of Clinical Research in Paramedical Sciences. 2021; In Press(In Press)
[Pubmed] | [DOI]
17 The Construction of Carbon Nanotubes Containing an Anti-Bacterial Chemical Component and its Effect on MDR and XDR Isolates of Pseudomonas Aeruginosa
Kamelia Banihashemi, Behnam Sobouti, Iraj Mehregan, Ronak Bakhtiari, Nour Amirmozafari
Reports of Biochemistry and Molecular Biology. 2020; 9(1): 89
[Pubmed] | [DOI]
18 Fingerprint Biometric System Hygiene and the Risk of COVID-19 Transmission
Kenneth Okereafor, Iniobong Ekong, Ini Okon Markson, Kingsley Enwere
JMIR Biomedical Engineering. 2020; 5(1): e19623
[Pubmed] | [DOI]
19 Frequency of ToxA and ExoS genes in Pseudomonas aeruginosa isolates obtained from different clinical specimens
Asmaa O. Namuq, Khalid O. Mohammed Ali, Ahmed H. Al-Ani
Al-Kufa University Journal for Biology. 2020; 12(1): 32
[Pubmed] | [DOI]
20 Antimicrobial resistance patterns of Pseudomonas aeruginosa isolated from canine clinical cases at a veterinary academic hospital in South Africa
Ulemu L. Eliasi, Dikeledi Sebola, James W. Oguttu, Daniel N. Qekwana
Journal of the South African Veterinary Association. 2020; 91
[Pubmed] | [DOI]
21 Aerobic Bacterial Profile and Antibiotic Susceptibility Pattern of Chronic Suppurative Otitis Media in a Tertiary Care Centre in Kerala
Aishwarya B., Prithi Nair K.
Journal of Evolution of Medical and Dental Sciences. 2019; 8(35): 2713
[Pubmed] | [DOI]
22 Analysis of Susceptibility Patterns of Pseudomonas aeruginosa and Isolation, Characterization of Lytic Bacteriophages Targeting Multi Drug Resistant Pseudomonas aeruginosa
Shri Natrajan Arumugam, Akarsh Chickamagalur Rudraradhya, Sathish Sadagopan, Sunilkumar Sukumaran, Ganesh Sambasivam, Nachimuthu Ramesh
Biomedical and Pharmacology Journal. 2018; 11(2): 1105
[Pubmed] | [DOI]
23 Antibiotic resistance profile and detection of metallo – beta lactamase in pseudomonas aeruginosa Isolates from clinical specimens in A tertiary care hospital
International Journal of pharma and Bio Science. 2017; 8(1)
[Pubmed] | [DOI]
Satyajeet K Pawar, Mane P M, Ravindra V Shinde, Patil H V, Patil S R, Karande G S, Mohite S T
Journal of Evidence Based Medicine and Healthcare. 2014; 1(7): 574
[Pubmed] | [DOI]
25 The antimicrobial resistance pattern in the clinical isolates of pseudomonas aeruginosa in a tertiary care hospital; 2008-2010 (A 3 Year Study)
Mohanasoundaram, K.M.
Journal of Clinical and Diagnostic Research. 2011; 5(3): 491-494


Print this article  Email this article


Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow