|
RESEARCH PAPER |
|
|
|
Year : 2007 | Volume
: 39
| Issue : 4 | Page : 201-205 |
|
Protective effect of Kalanchoe pinnata pers. (Crassulaceae) on gentamicin-induced nephrotoxicity in rats
Gaurav Vijay Harlalka, Chandragauda Raosaheb Patil, Mahesh Ramu Patil
R. C. Patel College of Pharmacy, Near Karwand Naka, Shirpur -425405, Dhule, Maharashatra, India
Date of Submission | 19-Jul-2006 |
Date of Decision | 01-Sep-2007 |
Date of Acceptance | 27-Sep-2007 |
Correspondence Address: Gaurav Vijay Harlalka R. C. Patel College of Pharmacy, Near Karwand Naka, Shirpur -425405, Dhule, Maharashatra India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/0253-7613.36540
Objective : The present study was undertaken to evaluate the aqueous extract of K. pinnata for its protective effects on gentamicin-induced nephrotoxicity in rats. Materials and Methods : Nephrotoxicity was induced in Wistar rats by intraperitoneal administration of gentamicin 100 mg/kg/day for eight days. Effect of concurrent administration of K. pinnata leaf extract at a dose of 125 mg/kg/day given by intraperitoneal route was determined using serum and urinary creatinine and blood urea nitrogen as indicators of kidney damage. The study groups contained six rats in each group. As nephrotoxicity of gentamicin is known to involve induction of oxidative stress, in vitro antioxidant activity and free radical-scavenging activity of this extract were evaluated. Result : It was observed that the aqueous extract of K. pinnata leaves significantly protects rat kidneys from gentamicin-induced histopathological changes. Gentamicin-induced glomerular congestion, peritubular and blood vessel congestion, epithelial desquamation, accumulation of inflammatory cells and necrosis of the kidney cells were found to be reduced in the group receiving the leaf extract of K. pinnata along with gentamicin. This extract also normalized the gentamicin-induced increases in urine and plasma creatinine, blood urea and blood urea nitrogen levels. In vitro studies revealed that the K. pinnata leaf extract possesses significant antioxidant as well as oxidative radical scavenging activities. Conclusion : It is proposed that the nephroprotective effect of the aqueous extract of K. pinnata leaves in gentamicin-induced nephrotoxicity may involve its antioxidant and oxidative radical scavenging activities.
Keywords: Antioxidant, Bryophyllum pinnata, gentamicin, nephrotoxicity
How to cite this article: Harlalka GV, Patil CR, Patil MR. Protective effect of Kalanchoe pinnata pers. (Crassulaceae) on gentamicin-induced nephrotoxicity in rats. Indian J Pharmacol 2007;39:201-5 |
How to cite this URL: Harlalka GV, Patil CR, Patil MR. Protective effect of Kalanchoe pinnata pers. (Crassulaceae) on gentamicin-induced nephrotoxicity in rats. Indian J Pharmacol [serial online] 2007 [cited 2023 Dec 8];39:201-5. Available from: https://www.ijp-online.com/text.asp?2007/39/4/201/36540 |
Extensive use of plants belonging to the Bryophyllum species in complementary and alternative therapy has been widely reported. These plants are also used in the treatment of certain diseases like urolithiasis, hypertension and diabetes involving altered kidney function. [1],[2] However, systematic and scientific reports on the investigation of K. pinnata for its effects on renal function are scarce. In the present study, an effort has been made to evaluate the effects of the aqueous leaf extract of this plant on gentamicin-induced nephrotoxicity in rats.
Gentamicin-induced nephrotoxicity is a model of acute renal failure caused by oxidative stress generated through the induction of superoxide anions. [3] Hence, in vitro antioxidant activity of this extract has been further investigated.
» Materials and Methods | |  |
Plant material
Fresh leaves were collected from the herbal garden of our institute and authenticated as K. pinnata (Lam.) Pers. ( Crassulaceae ) by the Botanical Survey of India, Pune, India. The voucher specimen (number - 120445) was submitted for future reference. The aqueous extract of the plant was prepared by using the cold maceration process. The extract was dried in a vacuum evaporator below 40º C and stored in air-tight, amber-colored containers at room temperature.
Animals
Healthy, male albino Wistar rats each weighing 150-200 g were used for this study. The rats were housed in polypropylene cages and maintained under standard conditions (12 h light and dark cycles, at 25±3º C and 35-60% humidity). Standard pelletized feed and tap water were provided ad libitum . The study was approved by the Institutional Animal Ethical Committee of R. C. Patel College of Pharmacy, Shirpur, India, registered under CPCSEA, India (Registration No. 651/02/C/CPCSEA).
Dose and route of administration
According to earlier reports, the LD 50 value for the aqueous extract of leaves of K. pinnata is 560 mg/kg i.p. in rats. [4] The extract has been found to be ineffective orally in mice and rats as it did not produce any gross observable effect even at doses as high as 2000 mg/kg p.o. Lack of any observable biological effect when administered by the oral route was attributed to inadequate absorption of the active phytoconstituents of this plant. [5],[6] In a preliminary study conducted in our laboratory, the leaf extract of K. pinnata did not exert any observable effects in rats when given by the oral route. However, intraperitoneal administration of the same extract was found to cause diuresis. Based on this observation and earlier reports, the dose of 125 mg/kg given by intraperitoneal route, which caused significant diuresis without any observable toxicity, was used throughout this study.
Nephroprotective activity
Eighteen male Wistar albino rats were assigned to three groups: control group, Gentamicin-treated group and Gentamicin- as well as K. pinnata -treated group, each group containing six rats. The gentamicin-treated group received 100 mg/kg/day gentamicin (Hi Media Laboratories, India) by the intraperitoneal (i.p.) route. [7] The K. pinnata -treated group received 100 mg/kg/day gentamicin i.p. and 125 mg/kg/day of the aqueous extract of K. pinnata i.p. for eight days. Rats in the control group were given sterile saline solution i.p. for the same number of days. After dosing on the 8 th day, individual rats were placed in separate metabolic cages for 24 hours for urine collection to determine urine output and urine creatinine content. [8] Blood samples were collected via retro-orbital puncture at the end of these 24 hours. The serum was rapidly separated and processed for determination of blood urea nitrogen (BUN) and serum creatinine using commercially available kits of Span Diagnostics Ltd, India. [4] Changes in body weight were recorded. Three rats per group were sacrificed and both kidneys were isolated from each rat. [9] The kidneys were weighed and processed for histopathological examination. [10]
Histopathological examination
The kidneys were sectioned longitudinally in two halves and were kept in 10% neutral formalin solution. [11] Both kidneys were processed and embedded in paraffin wax and sections were taken using a microtome. The sections were stained with hematoxylin and eosin and were observed under a computerized light microscope (Motic images 2000, version 1.3, China).
In vitro antioxidant activity
For all the in vitro antioxidant models mentioned below, ascorbic acid was used as a reference standard. The concentrations of ascorbic acid were 10, 20, 30, 40, 50 µg/ml and that of extract were 50, 100, 150, 200, 250 µg/ml.
DPPH free radical-scavenging activity
To determine the antioxidant activity of the leaf extract, a method based on the reduction of a methanolic solution of the colored free radical 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) was used. [12] The methanolic solution of DPPH (0.1 mM, 1 ml) was incubated with 3 ml of different concentrations of the leaf extract ranging from 50 to 250 mg/ml. Incubation was carried out at room temperature (25ºC) for 30 min. For each concentration, the assay was run in triplicate. At the end of the incubation period, the optical density of each sample was determined at 517 nm. [13] Ascorbic acid (Loba Chemie, India) solution was used as a standard. EC 50 values (concentration required to scavenge 50% of the free radicals) for both Ascorbic acid and the leaf extract were determined. The radical scavenging activity of the tested sample was expressed as an inhibition percentage (IP).
DPPH Scavenged (%) = (A DPPH - A test / A DPPH ) x 100
where A DPPH is the absorbance of the 0.1 mM of DPPH solution and A test is the absorbance in the presence of the extract or Ascorbic acid.
Nitric oxide radical-scavenging activity using the Griess Illosvay reaction [12],[14]
Free radical-scavenging activity was evaluated by studying the inhibition of the generation of Nitric Oxide from Sodium Nitroprusside. An aqueous solution of sodium nitroprusside at physiological pH spontaneously generates nitric oxide, which interacts with oxygen to produce nitrite ions. The nitrite ions thus produced can be quantified using their reaction with Griess reagent that leads to formation of a chromophore, the concentration of which is proportional to that of the generated nitrite ions. Scavengers of nitric oxide compete with oxygen leading to a reduced production of nitric oxide.
In this assay, 1.0 ml of Sodium nitroprusside (5 mM) in phosphate-buffered saline (PBS) was mixed with 3.0 ml of different concentrations (50-250 µg/ml) of the extract dissolved in the distilled water. The assay mixture was then incubated at 25°C for 150 minutes. These solutions were treated with Griess' reagent and the optical density of the resultant chromophore determined spectrophotometrically at 546 nm and compared with the absorbance of standard solutions of ascorbic acid simultaneously run in identical assay units. The experiment was run in triplicate. As a blank, the assay mixture similarly run in the absence of the extract or ascorbic acid was used.
Reducing power assay [15]
As a measure of antioxidant activity, the reducing power of the extract was also determined as follows: 1 ml of different concentrations of the K. pinnata extract solutions were added to 2.5 ml of 1% potassium ferricyanide in different test tubes and the resultant mixture incubated at 50º C for 20 min. Then, 2.5 ml of 10% trichloroacetic acid was added to each tube. The tubes were centrifuged for 10 min at 3000 rpm. The supernatant from each tube (2.5 ml) was taken in a separate test tube and 2.5 ml of distilled water and 0.5 ml (0.1%) ferric chloride solution were added to each tube. The absorbance of these assay mixtures was measured at 700 nm. Increase in the absorbance of the reaction mixture was considered to be the reducing power of the extract.
In parallel to this, the reducing power of ascorbic acid was also determined for comparison.
Anti-lipid peroxidation
Decomposition of the lipid membrane of cells leads to the formation of Malondialdehyde (MDA) along with other aldehydes and enols as end-products. Malondialdehyde (MDA) formed during lipid peroxidation then reacts with thiobarbituric acid (TBA) to form a colored complex which can be spectrophotometrically measured at 532 nm. [16]
Anti-lipid peroxidation in liver homogenate [17],[18]
Preparation of liver homogenate
Rat liver was perfused with ice-cold 0.15 M KCl through the portal vein. The perfused liver was isolated and 10% (w/v) homogenate was prepared in PBS using a tissue homogenizer below 4º C. This homogenate was used to study in vitro lipid peroxidation.
The assay mixtures contained 0.5 ml of homogenate, 1 ml of 0.15 M KCl and 0.5 ml of different concentrations of the extract. Lipid peroxidation was initiated by adding 100 µl of 1 mM ferric chloride. The reaction mixture was incubated for 30 minutes at 37º C. After incubation, the reaction was stopped by adding 2 ml of ice-cold 0.25 N HCl containing 15% trichloroacetic acid and 0.38% TBA as well as 0.2 ml of 0.05% butylated hydroxyl toluene. The reaction mixture was heated for 60 min at 80º C, cooled to room temperature and centrifuged at 5000 rpm for 15 minutes. Optical density (O.D.) of the supernatant from each tube was measured at 532 nm against a blank which contained all reagents except liver homogenate and plant extract. Identical experiments were performed to determine the normal (without drug and ferric chloride) and induced (without drug) lipid peroxidation. The percentage of anti-lipid peroxidation effect (% ALP) was calculated by following formula:
% ALP = (Ferric chloride O.D. - Sample O.D./ Ferric chloride O.D. - Normal O.D.) × 100
Statistical analysis
The data obtained was analyzed using one-way ANOVA followed by Dunnette's multiple comparison test. P < 0.05 was considered significant.
» Results | |  |
Nephroprotective Activity: Urine creatinine, serum creatinine, blood urea, blood urea nitrogen and the weights of the kidneys were found to be significantly increased in rats treated with only gentamicin; whereas treatment with the aqueous extract of the leaves of K. pinnata was found to protect the rats from such effects of gentamicin. As shown in [Table - 1], urine volume was found to be significantly increased in the rats treated with K. pinnata leaf extract.
The body weights of the rats treated with gentamicin were also found to be significantly reduced as compared to control group and K. pinnata-treated rats.
Histopathological examination
Control rats showed normal glomerular and tubular histology whereas gentamicin was found to cause glomerular, peritubular and blood vessel congestion and result in the presence of inflammatory cells in kidney sections from the gentamicin-treated group. Concurrent treatment with the extract was found to reduce such changes in kidney histology induced by gentamicin [Figure - 1] and [Table - 2].
In vitro antioxidant activity
DPPH method
EC 50 value for the Standard Ascorbic Acid Solution was found to be 11.25 µg/ml whereas EC 50 for the aqueous extract of leaves of K. pinnata was found to be 116.25 µg/ml [Table - 3].
Nitric oxide radical-scavenging activity
EC 50 of the Standard Ascorbic acid solution was found to be 15.5 µg/ml while it was 90 µg/ml for the extract [Table - 3].
Reducing power assay
Proportional increases in reducing power of both Ascorbic acid and the extract of K. pinnata were observed with increasing concentrations.
Anti-lipid peroxidation in liver homogenate
EC 50 of the standard Ascorbic acid solution was found to be 14.0 µg/ml while EC 50 for the aqueous extract of the leaves of K. pinnata was found to be 125 µg/ml [Table - 3].
» Discussion | |  |
Our study results show that the aqueous extract of leaves of Kalanchoe pinnata possesses potent nephroprotective and in vitro antioxidant activity. This plant contains different classes of phytochemicals such as flavonol glycosides like quercetin-3-L-rhamnosido-L-arabinofuranoside, quercetin-3-diarabinoside and kaempferol-3-glucoside, many alkanes C25-C35 (n-hentriacontane, n-triacontane predominating) and alkanols C 26 -C 34 . Pentacyclic triterpenoids like α-amyrin, b-amyrin and sterols like sitosterol have also been isolated from the non-saponifiable fraction. Furthermore, the presence of other phenolic constituents like p -coumaric, ferulic, syringic, caffeic and p -hydroxybenzoic acids [19] and organic acids like isocitric [20] and citric acids has been reported. [21]
Quercetin and kaempferol are detected in the leaves. An earlier report [22] suggests that quercetin has a marked protective effect on cadmium-induced nephrotoxicity that results from an increase in Metallothionein, a small cysteine-rich protein and eNOS (endothelial nitric oxide synthase) expression and the inhibition of COX-2 (cyclooxygenase-2) and iNOS (inducible nitric oxide synthase) expression.
The results of our study suggest that K. pinnata contains constituents having nephroprotective and antioxidant activities, which are comparable to that of ascorbic acid. Further investigations using specific fractions of this extract can help to isolate and identify potential nephroprotective and antioxidant constituents.
» Acknowledgment | |  |
We are thankful to Mr. P. S. N. Rao, Joint Director, Botanical Survey of India, Pune for authentication of the plant; Dr. S. J. Surana, Principal, R.C. Patel College of Pharmacy, Shirpur for sponsoring the study and the Institutional Animal Ethical Committee of R.C. Patel College of Pharmacy, Shirpur, India, registered under CPCSEA, India (Registration No. 651/02/C/CPCSEA) for approving the study.
» References | |  |
1. | Sastri BN. Kalanchoe pinnata. In : Thacker MS, Ram LS, Krishnan MS, Prashad B, Chopra RN, Santapau H, editors. The Wealth of India, A dictionary of Indian raw materials and industrial products, Raw Materials. CSIR: New Delhi; 2001. Vol. V: H-K, p. 315-6. |
2. | Ojewole JA. Antinociceptive, anti-inflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract. J Ethnopharmacol 2005;99:13-9. [PUBMED] [FULLTEXT] |
3. | Maldonado PD, Barrera D, Rivero I, Mata R, Campos ON, Pando RH, et al . Antioxidant S-Allylcysteine prevents gentamicin-induced oxidative stress and renal damage. Free Radiac Biol Med 2003b;35:317-24. |
4. | Shirwaikar A, Issac D, Malini S. Effect of Aerva lanata on cisplatin and gentamicin models of acute renal failure. J Ethnopharmacol 2004;90:81-6. [PUBMED] [FULLTEXT] |
5. | Varma RK, Ahmad A, Kharole MU, Garg BD. Toxicologic studies on Kalanchoe integra: An indigenous plant: Acute toxicity study. Indian J Pharmacol 1979;11:301-5. |
6. | Varma RK, Garg BD, Ahmad A. Pharmacodynamic studies on Kalanchoe integra: An indigenous plant. Indian J Pharmacol 1986;18:78-83. |
7. | Azhar Alam MM, Javed K, Jafri MA. Effect of Rheum emodi (Revand Hindi) on renal functions in rats. J Ethnopharmacol 2005;96:121-5. |
8. | Murakami H, Yayama K, Chao J, Chao L. Atrial natriuretic peptide gene delivery attenuates gentamycin-induced nephrotoxicity in rats. Nephrol Dial Transplant 1999;14:1376-84. [PUBMED] [FULLTEXT] |
9. | Annie S, Rajagopal PL, Malini S. Effect of Cassia auriculata Linn Root extract on cisplatin and gentamicin-induced renal injury. Phytomedicine 2005;12:555-60. [PUBMED] |
10. | Erdem A, Gondogan NU, Usubatan A, Kilinc K, Erdem SR, Kara A, et al . The protective effect of taurine against gentamicin-induced acute tubular necrosis in rats. Nephrol Dial Transplant 2000;15:1175-82. |
11. | Ogeturk M, Kus I, Colakoglu N, Zararsiz I, Ilhan N, Sarsilmaz M. Caffeic acid phenethyl ester protects kidneys against carbon tetrachloride toxicity in rats. J Ethnopharmacol 2005;97:273-80. [PUBMED] [FULLTEXT] |
12. | Altarejos J, Salido S, Bonilla MP, Palomino PJ, Beek TA, Nogueras M, et al . Preliminary assay on the free radical scavenging activity of olive wood extracts. Fitoterapia 2005;76:348-51. |
13. | Gopinathan N, Srinivasan KK, Mathew JE. Free radical scavenging properties of the ethanol extract of Saccharum spontaneum . Indian Drugs 2004;41:633-5. |
14. | Badami S, Prakash O, Dongre SH, Suresh B. In vitro antioxidant properties of Solanum pseudocapsicum leaf extracts. Indian J Pharmacol 2005;37:251-2. |
15. | Shetgiri PP, D'Mello PM. Antioxidant activity of flavonoids: A comparative study. Indian Drugs 2003;40:567-9. |
16. | Scibior A, Zaporowska H, Ostrowski J, Banach A. Combined effect of vanadium (V) and chromium (III) on lipid peroxidation in liver and kidney of rats. Chem Biol Interact 2006;159:213-22. [PUBMED] [FULLTEXT] |
17. | Kimuya Y, Kubo M, Tani T, Arichi S, Okuda H. Studies on Scutellariae Radix IV: Effects on lipid peroxidation in rat liver. Chem Pharma Bull (Tokyo) 1981;29:2610-7. |
18. | Okhawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8. |
19. | Rastogi RP, Mehrotra BN. Kalanchoe pinnata. In : Rastogi RP, editor. Compendium of Indian Medicinal Plants, Vol. II. CDRI: Lucknow; 1993. p. 112. |
20. | Rastogi RP, Mehrotra BN. Kalanchoe pinnata. In : Rastogi RP, editor. Compendium of Indian Medicinal Plants, Vol. I. CDRI: Lucknow; 1991. p. 147. |
21. | Vickery HB, Wilson DG. Preparation of Potassium Dihydrogen L,(+)-Isocitrate from Bryophyllum calycinum leaves. J Biol Chem 1958;233:14-7. [PUBMED] [FULLTEXT] |
22. | Morales AI, Sanchez CV, Jerkic M, Santiago JM, Gonzalez PD, Barriocanal FP, et al . Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats. Toxicol Appl Pharmacol 2006;210:128-35. |
[Figure - 1]
[Table - 1], [Table - 2], [Table - 3]
This article has been cited by | 1 |
Influence of omega- 3 fatty acids, soya isoflavones and their combination for abrogating carbon tetrachloride hazards in male rats |
|
| E. S. Abdel-Baky, S. A. Radwan, M. F. Ibrahim, O. N. Abdel-Rahman | | Brazilian Journal of Biology. 2024; 84 | | [Pubmed] | [DOI] | | 2 |
Bioactive Ingredients in K. pinnata Extract and Synergistic Effects of Combined K. pinnata and Metformin Preparations on Antioxidant Activities in Diabetic and Non-Diabetic Skeletal Muscle Cells |
|
| Pedro Ramon, Daniela Bergmann, Hussain Abdulla, Jean Sparks, Felix Omoruyi | | International Journal of Molecular Sciences. 2023; 24(7): 6211 | | [Pubmed] | [DOI] | | 3 |
Phytochemical Standardization of an Extract Rich in Flavonoids from Flowers of Kalanchoe pinnata (Lam) Pers |
|
| Wilson Leonardo Villarreal Romero, Jorge Eliecer Robles Camargo, Geison Modesti Costa | | Scientia Pharmaceutica. 2023; 91(4): 50 | | [Pubmed] | [DOI] | | 4 |
LC/MS-Based Profiling of Hedyotis aspera Whole-Plant Methanolic Extract and Evaluation of Its Nephroprotective Potential against Gentamicin-Induced Nephrotoxicity in Rats Supported by In Silico Studies |
|
| Dsnbk Prasanth, Lingala Siva Sankar Reddy, Tharani Dasari, Pamula Reddy Bhavanam, Sheikh F. Ahmad, Rahul Nalluri, Praveen Kumar Pasala | | Separations. 2023; 10(11): 552 | | [Pubmed] | [DOI] | | 5 |
Inhibition and dissolution of calcium oxalate crystals and kidney stones by the extract of Kalanchoe pinnata |
|
| Ranaweera Samantha, Weerasinghe Shanika, Tarannum Fatema, B. Walters Keisha | | Journal of Medicinal Plants Research. 2023; 17(6): 201 | | [Pubmed] | [DOI] | | 6 |
Conventional medicines used for kidney protection in Bangladesh: a review |
|
| Shafiul Azam Zishan, Md. Ishtiaque Uddin, Jannatul Naima, Sadab Ibban | | Infectious Diseases and Herbal Medicine. 2023; 4(1) | | [Pubmed] | [DOI] | | 7 |
Significance of Bryophyllum pinnatum (Lam.) for green synthesis of anti-bacterial copper and selenium nanoparticles and their influence on soil microflora |
|
| Boregowda Nandini, Lakshmi Krishna, Sanjay C. Jogigowda, Geetha Nagaraja, Shiva Hadimani, Daoud Ali, Kazunori Sasaki, Sudisha Jogaiah | | Applied Nanoscience. 2023; | | [Pubmed] | [DOI] | | 8 |
Silver nanoparticles synthesized via green chemistry with the aid of Delphinium denudatum Wall. root extract modulated gentamicin nephrotoxicity activity with respect to oxidative potential |
|
| N A Siddique, A M M A Al-Samman | | Advances in Natural Sciences: Nanoscience and Nanotechnology. 2022; 13(1): 015003 | | [Pubmed] | [DOI] | | 9 |
A Review of the Traditional Uses, Phytochemistry and Pharmacology of Bryophyllum pinnatum (Lam.) (Crassulaceae) |
|
| Taiwo O. Elufioye, Adebola O. Oyedeji, Solomon Habtemariam | | Journal of Biologically Active Products from Nature. 2022; : 1 | | [Pubmed] | [DOI] | | 10 |
Genotoxicity, nitric oxide level modulation and cardio-protective potential of Kalanchoe Integra Var. Crenata (Andr.) Cuf Leaves in murine models |
|
| Isaac Julius Asiedu-Gyekye, Emmanuel Arhin, Stella Amaaba Arthur, Benoit Banga N'guessan, Seth Kwabena Amponsah | | Journal of Ethnopharmacology. 2022; 283: 114640 | | [Pubmed] | [DOI] | | 11 |
Anti-urolithiatic activity of Bryophyllum pinnatum Lam. hydroalcoholic extract in sodium oxalate-induced urolithiasis in rats |
|
| R.B. Pandhare, R.R. Shende, M.S. Avhad, V.K. Deshmukh, P.B. Mohite, B. Sangameswaran, R.B. Daude | | Journal of Traditional and Complementary Medicine. 2021; 11(6): 545 | | [Pubmed] | [DOI] | | 12 |
In vivo assessment of reversing aminoglycoside antibiotics nephrotoxicity using Jatropha mollissima crude extract |
|
| Muhammad Omer Iqbal, Esam Bashir Yahya | | Tissue and Cell. 2021; 72: 101525 | | [Pubmed] | [DOI] | | 13 |
Nephroprotective effect of
Bryophyllum pinnatum-
mediated silver nanoparticles in ethylene glycol-induced urolithiasis in rat
|
|
| Revati Dighade, Ranjit Ingole, Pramod Ingle, Aniket Gade, Sunil Hajare, Maheshkumar Ingawale | | IET Nanobiotechnology. 2021; 15(3): 266 | | [Pubmed] | [DOI] | | 14 |
Effects of Bryophyllum pinnatum Administration on Wistar Rat Pregnancy: Biochemical and Histological Aspects |
|
| Jorge Kioshi Hosomi, Anamaria da Silva Facina, Manuel de Jesus Simões, Mary Uchiyama Nakamura | | Complementary Medicine Research. 2021; : 1 | | [Pubmed] | [DOI] | | 15 |
Phytochemical investigations, antioxidant, cytotoxic, antidiabetic and antibiofilm activities of Kalanchoe laxiflora flowers |
|
| Ezzat E.A. Osman, Asmaa S. Mohamed, Ahmed Elkhateeb, Adil Gobouri, Marwa M. Abdel-Aziz, El-Sayed S. Abdel-Hameed | | European Journal of Integrative Medicine. 2021; : 102085 | | [Pubmed] | [DOI] | | 16 |
Nephroprotective properties of the methanol stem extract of Abrus precatorius on gentamicin-induced renal damage in rats |
|
| Olufunke Olubunmi Falayi, Ademola Adetokunbo Oyagbemi, Temidayo Olutayo Omobowale, Emmanuel Abiodun Ayodele, Aduragbenro Deborah Adedapo, Momoh Audu Yakubu, Adeolu Alex Adedapo | | Journal of Complementary and Integrative Medicine. 2019; 16(3) | | [Pubmed] | [DOI] | | 17 |
Amelioration of Cadmium-Induced Nephropathy using Polyphenol-rich Extract of Vernonia amygdalina (Del.) Leaves in Rat Model |
|
| Christian E. Imafidon, Rufus O. Akomolafe, Sanusi A. Abubakar, Oluwadare J. Ogundipe, Olaoluwa S. Olukiran, Oladele A. Ayowole | | Open Access Macedonian Journal of Medical Sciences. 2015; 3(4): 567 | | [Pubmed] | [DOI] | | 18 |
Antihypertensive activities of the aqueous extract of Kalanchoe pinnata (Crassulaceae) in high salt-loaded rats |
|
| Orelien Sylvain Mtopi Bopda,Frida Longo,Thierry Ndzana Bella,Protais Marcellin Ohandja Edzah,Germain Sotoing Taïwe,Danielle Claude Bilanda,Esther Ngo Lemba Tom,Pierre Kamtchouing,Theophile Dimo | | Journal of Ethnopharmacology. 2014; | | [Pubmed] | [DOI] | | 19 |
Nutraceutical with Anti-Inflammatory Activity for the Management of Airway Remodeling in Bronchial Asthma: <i>Kalanchoe integra</i> Var. Crenata (Andr.) Cuf Leaf Extract |
|
| Asiedu-Gyekye Isaac Julius,Awortwe Charles,Nyamekye Effah Samuel,Antwi Daniel Ansong,Seidu Mahmood,Adjei Samuel,Banga N’guessan Benoit Kwame,Amoateng Patrick,Nkansah Edwin | | Pharmacology & Pharmacy. 2014; 05(03): 250 | | [Pubmed] | [DOI] | | 20 |
Stem-bark of Terminalia arjuna attenuates human monocytic (THP-1) and aortic endothelial cell activation |
|
| Praveen K. Kokkiripati,Ratnam V. Kamsala,Leena Bashyam,Nalini Manthapuram,Prasanth Bitla,Vidyadhari Peddada,Agepati S. Raghavendra,Sarada D. Tetali | | Journal of Ethnopharmacology. 2013; 146(2): 456 | | [Pubmed] | [DOI] | | 21 |
Cisplatin-induced nephrotoxicity in mice: protective role ofLeea asiaticaleaves |
|
| Saikat Sen,Biplab De,N. Devanna,Raja Chakraborty | | Renal Failure. 2013; 35(10): 1412 | | [Pubmed] | [DOI] | | 22 |
Short-term administration of an aqueous extract of kalanchoe integra var. crenata (Andr.) Cuf leaves produces no major organ damage in Sprague-Dawley rats |
|
| Isaac J. Asiedu-Gyekye,Daniel A. Antwi,Charles Awortwe,Benoit Banga Næguessan,Alexander K. Nyarko | | Journal of Ethnopharmacology. 2013; | | [Pubmed] | [DOI] | | 23 |
Anti-inflammatory, analgesic, and antioxidant activities ofPisonia aculeata: Folk medicinal use to scientific approach |
|
| Saikat Sen,Raja Chakraborty,B. Rekha,D. Revathi,S. Chinna Ayyanna,G. Hemalatha,G. Ashok Kumar Reddy,S. Hyndavi,P. Jeevan Ikhyatha Babu,P. Ravi Prakash,C. Sridhar | | Pharmaceutical Biology. 2013; 51(4): 426 | | [Pubmed] | [DOI] | | 24 |
Renoprotective effects of the crude extract and solvent fractions of the leaves of Euclea divinorum Hierns against gentamicin-induced nephrotoxicity in rats |
|
| Tadiwos Feyissa,Kaleab Asres,Ephrem Engidawork | | Journal of Ethnopharmacology. 2013; 145(3): 758 | | [Pubmed] | [DOI] | | 25 |
Antiinflammatory, antinociceptive and antioxidant activities of Phyllanthus acidus L. extracts |
|
| Raja Chakraborty,De Biplab,Nayakanti Devanna,Saikat Sen | | Asian Pacific Journal of Tropical Biomedicine. 2012; 2(2): S953 | | [Pubmed] | [DOI] | | 26 |
Nephroprotective activity of Solanum xanthocarpum fruit extract against gentamicin–induced nephrotoxicity and renal dysfunction in experimental rodents |
|
| Talib Hussain,Ramesh K Gupta,K Sweety,Bavani Eswaran,M Vijayakumar,Chandana Venkateswara Rao | | Asian Pacific Journal of Tropical Medicine. 2012; 5(9): 686 | | [Pubmed] | [DOI] | | 27 |
THE HPTLC QUANTITATION OF VITEXIN IN OXALIS CORNICULATA LEAVES AND SCREENING OF ITS NEPHROPROTECTIVE ACTIVITY |
|
| M. C Divakar, Lakshmidevi S, Sreenivasan N. | | INDIAN DRUGS. 2012; 49(03): 30 | | [Pubmed] | [DOI] | | 28 |
Phytochemical Investigation with Assessment of Cytotoxicity and Antibacterial Activities of Chloroform Extract of the Leaves of Kalanchoe pinnata |
|
| S.K. Biswas, A. Chowdhury, S.Z. Raihan, M.A. Muhit, M.A. Akbar, R. Mowla | | American Journal of Plant Physiology. 2012; 7(1): 41 | | [VIEW] | [DOI] | | 29 |
Nephroprotective Effect of Ursolic Acid in a Murine Model of Gentamicin-Induced Renal Damage |
|
| Preethi G. Pai,Savindika Chamari Nawarathna,Avdhooth Kulkarni,Umma Habeeba,Sudarshan Reddy C.,Srinivas Teerthanath,Jnaneshwara P. Shenoy | | ISRN Pharmacology. 2012; 2012: 1 | | [Pubmed] | [DOI] | | 30 |
Investigation of Cytotoxicity and Antifungal Activities of Petroleum Ether and Aqueous Extracts of Leaves and Stems of Kalanchoe pinnata L. (Crassulaceae) |
|
| Anusua Chowdhury, Subrata Kumar Biswas, Joysree Das, Utpal Kumar Karmakar, Manik Chandra Shill, Nayan Dutta | | Asian Journal of Plant Sciences. 2011; 10(4): 274 | | [VIEW] | [DOI] | | 31 |
Protective effect of <i>Basella alba</i> L. on nephrotoxicity induced by gentamycin in rats |
|
| Saleh Alqasoumi | | Clinical and Experimental Medical Journal. 2011; 5(4): 225 | | [VIEW] | [DOI] | | 32 |
Gum resin of Boswellia serrata inhibited human monocytic (THP-1) cell activation and platelet aggregation |
|
| Praveen K. Kokkiripati, Lepakshi Md. Bhakshu, Swathi Marri, K. Padmasree, Anupama T. Row, Agepati S. Raghavendra, Sarada D. Tetali | | Journal of Ethnopharmacology. 2011; | | [VIEW] | [DOI] | | 33 |
Effect of ethanolic and aqueous extracts of Bauhinia variegata Linn. on gentamicin-induced nephrotoxicity in rats |
|
| Sharma, R.K., Rajani, G.P., Sharma, V., Komala, N. | | Indian Journal of Pharmaceutical Education and Research. 2011; 45(2): 192-198 | | [Pubmed] | | 34 |
Diuretic and nephroprotective activity of leaves of Nyctanthes arbortristis Linn. |
|
| Patil, K.S., Bommannavar, P.B., Kudachi, J.S. | | Indian Drugs. 2011; 48(1): 36-39 | | [Pubmed] | | 35 |
Protective effect of Withania somnifera root powder on lipid peroxidation and antioxidant status in gentamicin-induced nephrotoxic rats |
|
| Jeyanthi, T., Subramanian, P. | | Journal of Basic and Clinical Physiology and Pharmacology. 2010; 21(1): 61-78 | | [Pubmed] | | 36 |
Protective Effect of Withania Somnifera root powder on lipid peroxidation and antioxidant status in gentamicin induced nephrotoxic rats |
|
| T. Jeyanthi,P. Subramanian | | Journal of Basic and Clinical Physiology and Pharmacology. 2010; 21(1) | | [Pubmed] | [DOI] | | 37 |
Protective effect of oleanolic acid on gentamicin induced nephrotoxicity in rats |
|
| Chandragouda R. Patil, Ramchandra B. Jadhav, Pushparaj K. Singh, Sneha Mundada, Prabhakar R. Patil | | Phytotherapy Research. 2010; 24(1): 33-37 | | [Pubmed] | [DOI] | | 38 |
Nephroprotective Effect ofWithania somnifera:A Dose-Dependent Study |
|
| Thangavel Jeyanthi,Perumal Subramanian | | Renal Failure. 2009; 31(9): 814 | | [Pubmed] | [DOI] | | 39 |
Renoprotective effects of Andrographis paniculata (Burm. f.) Nees in rats |
|
| Singh, P., Srivastava, M.M., Khemani, L.D. | | Upsala Journal of Medical Sciences. 2009; 114(3): 136-139 | | [Pubmed] | | 40 |
Bryophyllum pinnatum (Lam.) Kurz.: Phytochemical and pharmacological profile: A review |
|
| Kamboj, A., Saluja, A.K. | | Pharmacognosy Reviews. 2009; 3(6): 364-374 | | [Pubmed] | | 41 |
Nephroprotective effect of withania somnifera: A dose-dependent study |
|
| Jeyanthi, T., Subramanian, P. | | Renal Failure. 2009; 31(9): 814-821 | | [Pubmed] | |
|
 |
|
|
|
|