Indian Journal of Pharmacology Home 

[Download PDF]
Year : 2008  |  Volume : 40  |  Issue : 6  |  Page : 266--270

Antioxidant potential of the methanol-methylene chloride extract of Terminalia glaucescens leaves on mice liver in streptozotocin-induced stress

Guy Bertrand Sabas Nya Njomen1, Rene Kamgang1, Jean Louis Essame Oyono2, Njifutie Njikam1,  
1 General Endocrinology and Metabolism Systems (GEMS), Laboratory of Animal Physiology, Faculty of Sciences, University of Yaounde 1, Cameroon
2 Faculty of Medicine and Biomedical Sciences, University of Yaounde 1 and IMPM - Yaounde, Cameroon

Correspondence Address:
Rene Kamgang
General Endocrinology and Metabolism Systems (GEMS), Laboratory of Animal Physiology, Faculty of Sciences, University of Yaounde 1


Aim: The antioxidant effect of the methanol-methylene chloride extract of Terminalia glaucescens (Combretaceae) leaves was investigated in streptozotocin (STZ)-induced oxidative stress. Methods: Oxidative stress was induced in mice by a daily dose of STZ (45 mg/kg body weight i.p.) for five days. From day one, before STZ injection, normal and diabetic-test mice received an oral dose of the extract (100 or 300 mg/kg b.w.) daily. Plasma metabolites, lipid peroxidation, and antioxidant enzymes in the liver were assessed and gain in body weight recorded. Results: In normal mice the plant extract reduced food and water intake, blood glucose and LDL-C level and body weight gain, did not affect the lipid peroxidation in the liver, while the antioxidant enzyme activities seemed increased. Blood glucose was decreased (P < 0.05) in normal mice treated with 300 mg/kg extract. Diabetic mice pretreated with 100 mg/kg extract as diabetic control mice (DC) showed significant (P < 0.001) body weight loss, polyphagia and polydipsia, high plasma glucose level, decrease in the liver catalase, peroxidase, and superoxide dismutase activities, and increase in lipid peroxidation. The HDL-C level was lowered (P < 0.05) whereas LDL-C increased. In 300 mg/kg extract-pretreated diabetic mice the extract prevented body weight loss, increase of blood glucose level, lipid peroxidation in liver, food and water intake, and lowering of plasma HDL-C level and liver antioxidants; this extract prevented LDL-C level increase. Conclusion: These results indicate that T. glaucescens protects against STZ-induced oxidative stress and could thus explain its traditional use for diabetes and obesity treatment or management.

How to cite this article:
Njomen GS, Kamgang R, Oyono JE, Njikam N. Antioxidant potential of the methanol-methylene chloride extract of Terminalia glaucescens leaves on mice liver in streptozotocin-induced stress.Indian J Pharmacol 2008;40:266-270

How to cite this URL:
Njomen GS, Kamgang R, Oyono JE, Njikam N. Antioxidant potential of the methanol-methylene chloride extract of Terminalia glaucescens leaves on mice liver in streptozotocin-induced stress. Indian J Pharmacol [serial online] 2008 [cited 2020 Jul 9 ];40:266-270
Available from:

Full Text


Diabetes mellitus is a major endocrine disorder and growing health problem in most countries. [1] Diabetes manifested by experimental animal models exhibit high oxidative stress due to persistent and chronic hyperglycemia which increases the generation of free radicals, thereby depleting the activities of antioxidative defense systems with alteration of antioxidant activities of enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (Gpx). [2] Increase in oxidative stress and changes in antioxidant capacity are the main participants in the development of diabetic complications.[3] In diabetes there are significant changes and irregularities in the metabolism of proteins, lipids, and carbohydrates. Streptozotocin (STZ) is frequently used to induce diabetes mellitus in experimental animals through its toxic effects on pancreatic b-cells. [4],[5] The cytotoxic action of STZ is associated with the generation of reactive oxygen species causing oxidative damage. [6]

Some plants or natural substances protect against the death of b-cells that precedes diabetes. [7] Terminalia arjuna , T. catappa, and T. chebula (Combretaceae) are known for their antioxidant properties. [8],[9] In Cameroon, T. glaucescens is claimed to be useful in the treatment of diabetes mellitus, obesity management, and some bacterial diseases. The preliminary phytochemical screening of this plant extract revealed the presence of tannins, alkaloids, flavonoids, and saponosides. [10] Among the natural antioxidant substances, pride of place was given to flavonoids, ubiquitously present in the plant kingdom and which exert antioxidant, anti-inflammatory, and lipid lowering effects. [11]

Although many plants offer certain medical benefits to humans, many of these claims are unproven scientifically. The objective of the present study was to assess in vivo the protective role of T. glaucescens extract on the liver of the mice in multiple low dose STZ-induced oxidative stress.

 Materials and Methods

Plant material and extract

T. glaucescens (Combretaceae) fresh leaves were harvested from Mbalmayo in the Centre Province of Cameroon. T. glaucescens was identified by Dr. Simeon Tchoulagueu of the Teachers' Training Higher College of the University of Yaoundι I, who did the botanical study of the plant and kept a voucher specimen in the laboratory. Two kilograms of the sun-dried powdered leaves were macerated in a mixture of methanol-methylene chloride (1:1) for seven days (with occasional stirring) at room temperature. The mixture was filtered with Whatman No.1 filter paper. The filtrate was concentrated under reduced pressure to obtain 125 g of a dark solid. This extract was dissolved in 10% dimethyl sulfoxide (DMSO) solution. The volume of administration was 5 µL/g b.w. for each experimental animal.

Animals used for the experiment

Male albino Wistar mice (26-30 g weight, 8-10 weeks old) were raised in the animal house of the laboratory under natural conditions with free access to water and regular rodent chow. For the experiment, the mice were fasted overnight prior to blood sugar determination and randomly divided into six groups of eight animals each:

One group of normal control (NC) receiving 10% DMSO (p.o.) and citrate buffer (Cb), i.p.Two groups of normal mice treated with 100 mg/kg body weight (NE100) or 300 mg/kg b.w. (NE300) plant extract (p.o.) and Cb (i.p.). One group of diabetic control mice (DC) treated with DMSO and STZ. Two groups of diabetic mice treated with 100 mg/kg b.w. (DE100) or 300 mg/kg b.w. (DE300) plant extract and STZ.

To induce diabetes, the mice received 45 mg/kg (i.p.) of freshly prepared STZ (Sigma Aldrich No. SO 130) dissolved in Cb of 100 mM pH 4.5 daily for five consecutive days. Plant extract was administered to fed mice when STZ injection was preceded by 4 h of fasting. T. glaucescens extract administration began one day prior to STZ injection (day 0) and lasted up to day 14. Animals DE100 and DE300 received an oral dose of plant extract daily for five consecutive days followed six hours later by i.p. injection of STZ.

Animal housing and in vivo experiments were done according to the guidelines of the European Union on Animal Care (CEE Council 86/609) that was adopted by the Institutional Committee of the Ministry of Scientific Research and Innovation of Cameroon.

Measurement of body weight gain, food, and water intake

Food and water intake were monitored on day 0, 1, 3, 6, and 12. Body weight was measured on day 0, 3, 6, 9, 12, and 15.

Determination of plasma metabolites

Blood samples for glucose determination were obtained from the tail tip of 4-h fasted mice on day 0, 3, 6, 9, and 12 of the experiments. Blood glucose level was estimated using a glucometer (Accu-Check, Roche). Mice with fasting blood glucose > 14 mM was considered as diabetic.

At the end of the treatment (day 15), mice were weighed and anesthetized with sodium pentobarbital (60 mg/kg i.p.). Blood was rapidly collected by cardiac puncture in syringes containing EDTA. Blood samples were centrifuged (1 min, 8000 g), plasma collected, aliquoted, and snap frozen in liquid nitrogen. Plasma parameters were assayed using commercially available kits according to the manufacturers' instructions: triglycerides (TG: Triglycerides PAP, bioMιrieux, Marcy l'Etoile, France), cholesterol (Cholesterol RTU, bioMιrieux), HDL cholesterol (HDL-Cholestιrol direct, bioMιrieux), and LDL cholesterol (LDL-C) level was determined using the formulae: [12]


n = 2 when values are expressed in mmol/L and n = 5 when values are expressed in g/L

LDL-C: LDL cholesterol; TC: total cholesterol; HDL-C: HDL cholesterol; TG: triglycerides

Supernatant preparation

The tissue samples of liver were quickly removed, weighed, perfused immediately with ice-cold saline (0.85%, w/v NaCl), and homogenized in chilled phosphate buffer (0.1 M, pH 7.4) containing potassium chloride (1.17%, w/v). The homogenate was centrifuged (800 g, 5 min, 4 °C) to remove debris. The supernatant so obtained was centrifuged at 10,000 g for 20 min at 4 °C to get postmitochondrial supernatant preparation, which was used to assay the CAT, SOD, and GPx activities.

Determination of the extract effect on lipid peroxidation in liver

Lipid peroxidation was estimated by thiobarbituric acid (TBA) reaction with malondialdehyde (MDA). [13] To 1 mL of supernatant, 0.5 mL of 30% trichloroacetic acid (TCA) was added followed by 0.5 mL of 0.8% TBA. The tubes were kept in a shaking water bath for 30 min at 80 °C. After 30 min of incubation the tubes were taken out and kept in ice-cold water for 10 min. These were then centrifuged at 800 g for 15 min. The absorbance of supernatant was read at 540 nm at room temperature against an appropriate blank. The concentration of MDA was measured from the standard calibration curve (prepared by) using tetraethoxypropane. Lipid peroxidation was expressed as nanomoles of MDA per milligram of protein.

Determination of the extract effect on antioxidant enzyme activities in the liver

Superoxide dismutase activity

The SOD activity was measured according to the method used by Marklund and Marklund. [14] The enzyme activity was expressed as units/mg protein and one unit of enzyme is defined as the enzyme activity that inhibits autoxidation of pyrogallol by 50%.

Catalase activity

To estimate the CAT activity the reaction mixture consisted of 1.95 mL phosphate buffer (0.1 M, pH 7.4), 1.0 mL hydrogen peroxide (H 2 O 2 ) (0.019 M), and 0.05 mL of supernatant in a final volume of 3 mL. Changes in absorbance were recorded at 240 nm. The enzyme activity was calculated as nanomoles of H 2 O 2 consumed/min/mg protein. The protein content of the supernatant was determined using the method with copper sulphate. [15]

Glutathione peroxidase activity

To estimate the GPx activity, the reaction mixture consisted of 1.65 mL phosphate buffer (0.1 M, pH 7.4), 0.1 mL EDTA (0.5 mM), 0.05 mL oxidized glutathionee (1 mM), 0.1 mL NADPH (0.1 mM), and 0.1 mL supernatant in a total volume of 2 mL. The disappearance of NADPH at 340 nm was recorded at 25 °C. The enzyme activity was calculated as nanomol of NADPH oxidized/min/mg protein using molar extinction coefficient of 6.22 x 10 3 /M/cm. [16]


Body weight, food, and water intake

Body weight of all groups was not significantly different from NC group before STZ injection. The body weight gain progressively decreased in DC and diabetic group treated with 100 mg/kg b.w. extract (DE100). The decrease was significant on day 9 and beyond: DC - 28% and DE100 - 25% ( P P Plasma metabolites

Blood glucose

In normal mice, T. glaucescens treatment resulted in the decrease of blood glucose levels in a dose dependent manner, 9% ( P P P P Lipid peroxidation in the liver

The MDA level in DC and DE100 mice liver homogenates was very significantly higher than NC MDA, 129% ( P P Antioxidant enzyme activities in the liver

The activities of the three antioxidant enzymes -SOD, CAT, and GPx - in the liver homogenates markedly decreased in DC and DE100 mice, -49% and -42% ( P P P T. glaucescens leaf on the liver of STZ-induced stressed mice. Multiple i.p. administration of STZ (45 mg/kg, once daily for five consecutive days) effectively induced diabetes in normal fasted mice as reflected by high glycemia, polyphagia, polydipsia, and body weight loss compared with NC mice. The hyperglycemia and diabetes were imputed to the selective destruction of pancreatic b-cells that secrete insulin. [17] Diabetes mellitus in rodents is a reliable and useful model for rapid observation of the protective effects of investigated agents on diabetes-induced damage. [7]

The STZ diabetic mice exhibited persistent hyperglycemia which is the main diabetogenic factor and contributes to the increase in oxygen free radicals by autoxidation of glucose. [18] Hyperglycemia also generates reactive oxygen species, which in turn, cause lipid peroxidation and membrane damage. [19] Diabetes increases oxidative stress in many organs, especially in the liver, [20] and thus may play a role in the pathogenesis and progression of diabetic tissue damage. [21] In this study, the level of MDA, an indicator of free radical generation and end product of lipid peroxidation, significantly increased in the untreated and 100 mg/kg extract treated diabetic mice liver. Lipid peroxidation is a commonly used index of increased oxidative stress and subsequent cytotoxicity. The increase in MDA level in diabetes mellitus suggests that hyperglycemia has induced peroxidative reaction in lipids. [22] With 300 mg/kg extract, the decrease of the MDA level in diabetic test mice suggests that T. glaucescens extract might protect against lipid peroxidation and diabetic oxidative stress.

In this study, the lipid peroxidation induced by STZ was associated with increased cholesterol, LDL cholesterol, triglyceridemia, decreased HDL-C, and key antioxidant enzymes (SOD, CAT, and GPx) in the DC and 100 mg/kg treated (DE100) diabetic mice. This result suggests that the extract at 100 mg/kg b.w. was not efficient enough to protect b-cell against the cytotoxic effect of STZ-mediated reactive oxygen species. Since b-cell necrosis and apoptosis is the core of the pathophysiology of diabetes mellitus, this might explain the diabetes mellitus state in these groups.

In 300 mg/kg extract treated diabetic mice (DE300) lipid peroxidation was associated with the decrease of LDL-C and TG, and the increase of HDL-C and key antioxidants. Lowering of LDL-C and TG levels with the enhancing of HDL-C level, is important for preventing high mortality lifestyle-related cardiovascular diseases. T. glaucescens can therefore be expected to help to prevent such diseases and this may explain the use of this plant in the treatment of diabetes and hypertension by tradipractitioners. The decrease in the activity of antioxidant enzymes could lead to an excess availability of the superoxide anion (O2 - ) and H 2 O 2 in biological systems, which in turn, generate hydroxyl radicals resulting in initiation and propagation of lipid peroxidation. In diabetic mice, the extract (300 mg/kg b.w.) increased the activity of antioxidants and may help to control free radicals. SOD protects the cell against the toxic effect of superoxide anion radicals. The increased SOD activity accelerates dismutation of superoxide radicals to H 2 O 2 , which is removed by CAT. [10] GPx is an important antioxidant enzyme that plays a role in the elimination of H 2 O 2 and lipid hydroperoxides and reduces peroxides by using reduced glutathione as a hydrogen donor. [23] The increase of SOD activity by the extract (300 mg/kg) might be attributed to the inhibition of active oxygen species generation from autoxidation of glucose generated by STZ action, while the increase of the CAT activity in the liver might indicate a high degree of oxidative stress resulting in the increase of endogenous H 2 O 2 . T. glaucescens extract contains chemical components such as tannins, alkaloids, flavonoids, and saponosides. [10] Flavonoids exhibit potent antioxidative and free radical scavenging activities. [24] Thus, the antioxidant activities of T. glaucescens extract are probably due to the presence of flavonoids or other compounds.

The present results indicate that the methanol-methylene chloride extract of T. glaucescens leaf at 300 mg/kg b.w. dose improved the SOD, CAT, and GPx activities, resulting in lower MDA level, and protected against STZ-induced oxidative stress in mice. The antihyperglycemic and antioxidant effects of T. glaucescens extract in STZ-induced diabetes could explain the traditional use of this plant for treatment or management of obesity and diabetes.


1Gavard JA, Lustman PJ, Clouse RE. Prevalence of depression in adults with diabetes. An epidemiological evaluation. Diabetes Care 1993;16:1167-78.
2Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes 1999;48:1-9.
3Ceriello A. Oxidative stress and glycemic regulation. Metabolism 2000;49:27-9.
4Kim MJ, Ryu GR, Sung JH, Min DS, Rhie DJ, Yoon SH, et al. Altered cholecystokinin-induced calcium signal in streptozotocin-induced diabetic rat pancreatic acini. Korean J Gastroenterol 2003;42:519-26.
5Yamagishi N, Nakayama K, Wakatsuki T, Hatayama T. Characteristic changes of stress protein expression in streptozotocin-induced diabetic rats. Life Sci 2001;69:2603-9.
6Szkudelski T. The mechanism of alloxan and streptozotocin action in B-cells of the rat pancreas. Physiol Res 2001;50:537-46.
7Yilmaz R, Uz E, Yucel N, Altuntas I, Ozcelik N. Protective effect of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat liver. J Biochem Mol Toxicol 2004;18:234-8.
8Kinoshita S, Inoue Y, Nakama S, Ichiba T, Aniya Y. Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin. Phytomedicine 2007;14:755-62.
9Prasad L, Husain Khan T, Jahangir T, Sultana S. Chemomodulatory effects of Terminalia chebula against nickel chloride induced oxidative stress and tumor promotion response in male Wistar rats. J Trace Elem Med Biol 2006;20:233-9.
10Ingabire G, Koumaglo HK, De Souza C, Dotse CK, Anani K, Kabera J, et al. Antimicrobial activity and preliminary phytochemical screening of Turraea heterophylla and Terminalia glaucescens used in Togo ethnomedecine to treat common infections. Planta Med 73(09) (2007) DOI: 10.1055/s-2007-986996
11Choi EM, Hwang JK. Effect of some medicinal plants on plasma antioxidant system and lipid levels in rats. Phytother Res 2005;19:382-6.
12Friedewald WT, Levy RI, Frederickson DS. Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of preparative ultracentrifuge. Clin Chem 1972;18:499-502.
13Ohkawa H, Ohishi N, Yagi K. Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8.
14Marklund S, Marklund G. Involvement of superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974;47:469-74.
15Clairbone A. Catalase activity. In: RAGreenwald, editor. CRC Handbook of methods for Oxygen Radical Research. Boca Raton, FL: CRC Press; 1985. p. 283-4.
16Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ. Low activities of glutathionee-related enzymes as factors in the genesis of urinary bladder cancer. Cancer Res 1984;44:5086-91.
17Zheng J, He J, Ji B, Li Y, Zhang X. Anti-hyperglycaemic activity of Prunella vulgaris L. in streptozotocin-induced diabetic mice. Asia Pac J Clin Nutr 2007;16:427-31.
18Lee J-S. Effect of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life Sci 2006;79:1578-84.
19Hunt JV, Smith CC, Wolff SP. Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 1988;39:1420-4.
20Aksoy N, Vural H, Sabuncu T. Aksoy S. Effects of melatonin on oxidative-antioxidative status of tissues in streptozotocin-induced diabetic rats. Cell Biochem Funct 2003;21:121-5.
21Kakkar R, Kalra J, Mantha SV, Parsad K. Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol Cell Biochem 1995;151:113-9.
22Hunkar T, Aktan F, Ceylan A, Karasu C; Antioxidants in Diabetes-Induced Complications (ADIC) Study Group. Effects of cod liver oil on tissue antioxidant pathways in normal and streptozotocin -diabetics. Cell Biochem Funct 2002;10:297-302.
23Emin Büyükokuroπlu M, Taysi S, Koη M, Bakan N. Dantrolene protects erythrocytes against oxidative stress during whole-body irradiation in rats. Cell Biochem Funct 2003;21:127-31.
24Urquiaga I, Leighton F. Plant polyphenol antioxidants and oxidative stress. Biol Res 2000;33:55-64.