IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 2106 
Small font sizeDefault font sizeIncrease font size
Navigate Here
  Search
 
  
Resource Links
   Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
   Article in PDF (566 KB)
   Citation Manager
   Access Statistics
   Reader Comments
   Email Alert *
   Add to My List *
* Registration required (free)

 
In This Article
   References
   Article Figures

 Article Access Statistics
    Viewed551    
    Printed17    
    Emailed0    
    PDF Downloaded52    
    Comments [Add]    

Recommend this journal

 


 
 Table of Contents    
LETTER TO THE EDITOR
Year : 2019  |  Volume : 51  |  Issue : 6  |  Page : 416-417
 

Fluorescence spectra of chloroquine suspension: A probable tool for quality assessment of the most common antimalarial in a user-friendly manner


1 Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, Haryana, India
2 Department of Science, Govt. PG College, Panchkula, Haryana, India

Date of Submission12-Jul-2019
Date of Decision02-Aug-2019
Date of Acceptance30-Dec-2019
Date of Web Publication16-Jan-2020

Correspondence Address:
Prof. Dibyajyoti Banerjee
Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh - 160 012
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijp.IJP_423_19

Rights and Permissions



How to cite this article:
Kaur S, Prasad N, Srivastava A, Kumari M, Singh S, Kumar D, Bhattacharyya R, Banerjee D. Fluorescence spectra of chloroquine suspension: A probable tool for quality assessment of the most common antimalarial in a user-friendly manner. Indian J Pharmacol 2019;51:416-7

How to cite this URL:
Kaur S, Prasad N, Srivastava A, Kumari M, Singh S, Kumar D, Bhattacharyya R, Banerjee D. Fluorescence spectra of chloroquine suspension: A probable tool for quality assessment of the most common antimalarial in a user-friendly manner. Indian J Pharmacol [serial online] 2019 [cited 2020 Jul 4];51:416-7. Available from: http://www.ijp-online.com/text.asp?2019/51/6/416/276046




Sir,

Chloroquine is a popular drug used in the treatment of malaria. Due to its good safety profile, it can be used in pregnant mothers and children. Furthermore, high elimination time of the drug provides long posttreatment preventive effect.[1] However, the poor or substandard quality of chloroquine is a worldwide concern which imposes life at risk and contributes toward the drug resistance.[2],[3] Therefore, quality assessment of chloroquine is of much concern.[4]

In the market, chloroquine is commonly available as a suspension for use in the pediatric population and tablets for use in adults. We feel that strict quality assurance of suspension is warranted as it is used in the pediatric population.

In this context, we have studied the fluorescence emission spectra of chloroquine diphosphate (MP Biomedicals Catalog No. 193919, 10 mg/ml in distilled water) at λEx 300 and found that chloroquine diphosphate in distilled water gives fluorescence emission in the range of 330–400 nm [Figure 1]a. Similarly, the fluorescence emission spectra of chloroquine phosphate suspension containing 10 mg/ml chloroquine (Lariago manufactured by Ipca Laboratories Ltd. Sejavta, Ratlam 457002. Batch No. GFA 018045R) were also studied [Figure 1]b. The spectrum of distilled water is given in [Figure 1]c. TECAN Infinite 200 Pro M PLEX multimode reader is used throughout the study setting the instrument in default mode. The chloroquine suspension contains sunset yellow, which is a synthetic food color. The sunset yellow is a fluorescent material which, when excited (λEx 310–410 nm), gives emission at 592 nm.[5]
Figure 1: Fluorescence emission scan of (a) pure chloroquine diphosphate (10 mg/ml), (b) chloroquine suspension (10 mg/ml), and (c) distilled water at λEx 300 nm (Y-axis represents arbitrary fluorescence unit and X-axis represents wavelength in nm). Effect of different concentrations of chloroquine suspension on the fluorescence intensity (d) up to 0.625 mg/ml and (e) up to 1 mg/ml of drug (Y-axis represents arbitrary fluorescence unit and X-axis represents concentration in mg/ml)

Click here to view


We have observed that outside the fluorescence emission range of chloroquine and sunset yellow, the suspension shows a typical pattern of emission when excited at 300 nm [Figure 1]b. However, in pure chloroquine and the suspension when excited at 300 nm, maximum emission is noted at 357 ± 20 nm.

It is interesting to note that at λEx 300 nm/λEm 357 nm, the fluorescent intensity increases linearly with increasing concentration of chloroquine suspension in distilled water (up to 0.625 mg/ml) [Figure 1]d. However, at higher concentration of chloroquine, the fluorescence intensity follows the logarithmic curve pattern [Figure 1]e.

We feel that the addition of sunset yellow in the suspension is the causative factor for deviation of the spectra of chloroquine diphosphate and the suspension, although the emission maximum is the same. We recommend more experimental study in the said direction, and by doing so, we feel that algorithm can be developed for quality control of chloroquine suspension by studying its fluorescence spectra without estimating chloroquine by tedious extraction–purification steps.

Acknowledgment

Sumanpreet Kaur and Dibyajyoti Banerjee acknowledge PGIMER, Chandigarh, for financial assistance. Monu Kumari acknowledges CSIR, New Delhi, India, for the award of fellowship (Dec. 2018). Sukhpreet Singh acknowledges UGC, India, for providing fellowship (F. No. 16-6(Dec. 2017)/2018(NET/CSIR). DK acknowledges CSIR, New Delhi, India, for providing fellowship (File No: 09/141 (0197)/2016-EMR-I).

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Krishna S, White NJ. Pharmacokinetics of quinine, chloroquine and amodiaquine. Clinical implications. Clin Pharmacokinet 1996;30:263-99.  Back to cited text no. 1
    
2.
Johnston A, Holt DW. Substandard drugs: A potential crisis for public health. Br J Clin Pharmacol 2014;78:218-43.  Back to cited text no. 2
    
3.
Newton PN, Caillet C, Guerin PJ. A link between poor quality antimalarials and malaria drug resistance? Expert Rev Anti Infect Ther 2016;14:531-3.  Back to cited text no. 3
    
4.
Tackman EC, Trujillo MJ, Lockwood TL, Merga G, Lieberman M, Camden P. Identification of substandard and falsified antimalarial pharmaceuticals chloroquine, doxycycline, and primaquine using surface-enhanced Raman scattering. Anal Methods 2018;10:4718-22.  Back to cited text no. 4
    
5.
Chen GQ, Wu YM, Wang J, Zhu T, Gao SM. Fluorescence spectroscopy study of synthetic food colors. Guang Pu Xue Yu Guang Pu Fen Xi 2009;29:2518-22.  Back to cited text no. 5
    


    Figures

  [Figure 1]



 

Top
Print this article  Email this article
 

    

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer
Online since 20th July '04
Published by Wolters Kluwer - Medknow