IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 3471 
Small font sizeDefault font sizeIncrease font size
Navigate Here
  Search
 
 » Next article
 » Previous article 
 » Table of Contents
  
Resource Links
 »  Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »  Article in PDF (94 KB)
 »  Citation Manager
 »  Access Statistics
 »  Reader Comments
 »  Email Alert *
 »  Add to My List *
* Registration required (free)

 
In This Article
   Acknowledgment
   References
   Article Tables

 Article Access Statistics
    Viewed3908    
    Printed145    
    Emailed3    
    PDF Downloaded419    
    Comments [Add]    
    Cited by others 9    

Recommend this journal

 


 
RESEARCH LETTER
Year : 2006  |  Volume : 38  |  Issue : 3  |  Page : 205-206
 

Antioxidant activity of ezetimibe in hypercholesterolemic rats


1 Department of Pharmacology, C. U. Shah College of Pharmacy & Research, Wadhwan City, Dist. Surendranagar, India
2 Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, India

Correspondence Address:
S Jain
Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0253-7613.25811

Rights and Permissions



How to cite this article:
Pandya N, Santani D, Jain S. Antioxidant activity of ezetimibe in hypercholesterolemic rats. Indian J Pharmacol 2006;38:205-6

How to cite this URL:
Pandya N, Santani D, Jain S. Antioxidant activity of ezetimibe in hypercholesterolemic rats. Indian J Pharmacol [serial online] 2006 [cited 2019 Aug 20];38:205-6. Available from: http://www.ijp-online.com/text.asp?2006/38/3/205/25811


Hypercholesterolemia is a significant risk factor for the development of coronary heart disease, which is a leading cause of mortality and morbidity in many countries. Results from several landmark clinical trials have shown that, 3-hydroxy-3methylglutaryl-coenzyme A reductase inhibitors (i.e., statins) effectively and significantly reduce elevated serum low-density lipoprotein cholesterol (LDL-C) concentrations, improve cardiovascular outcome and reduce the risk for coronary events. Despite the availability of statins and other lipid lowering drugs, a significant number of patients with hypercholesterolemia do not achieve adequate cholesterol reduction, having blood cholesterol concentrations higher than desired. Thus, treatment options with drugs possessing different mechanisms of action and improved safety profile, are needed.

Ezetimibe, 1-(4-fluorophenyl)-3(R)-(3-(4-fluorophenyl)-3(S)-hydroxypropyl)-4(S)-(4-hydroxyphenyl)-2-azetidinone, is a selective cholesterol absorption inhibitor that effectively blocks intestinal absorption of cholesterol. Such drugs prevent the absorption of cholesterol, by inhibiting the passage of dietary and biliary cholesterol across the intestinal wall. These drugs represent a new class of pharmaceutical agents that can be used to treat patients with hypercholesterolemia. Ezetimibe alone or in combination with statins, effectively reduce LDL-C concentrations. It also increases high-density lipoprotein cholesterol (HDL-C) and may reduce elevated triglyceride (TG) concentrations.[1] The role of free radicals, is almost clear in many disorders. In atherosclerosis, oxidative stress generates free radicals, which has harmful effects on every organ. This free radical oxidizes LDL-C to convert the latter into oxidized LDL (oxLDL), which leads to the atherosclerosis. Ezetimibe has not been evaluated so far, for its effects on free radical scavenging activity. Therefore, the present investigation was undertaken to evaluate the effects of Ezetimibe on hypercholesterolemic rats, with special reference to antioxidant activity. Effect of Ezetimibe was observed on lipid profile, as well as lipid peroxidation, in rats receiving a high cholesterol diet. Vitamin E was used as standard for antioxidant activity.

Sprague Dawley (SD) rats of either sex, maintained at a 12 h light/dark cycle, were used for the study. Animals were housed under standard laboratory conditions, with free access to food (commercial rat cubes from Pranav Agro Industries Ltd, Baroda, India, consisting of 23% crude protein, 4.3% crude oil, 3.1% crude fiber, 7.1% ash, 1.22% sand silica) and water, ad libitum . Hyperlipidemia was induced by feeding a high cholesterol diet (Regular diet mixed with 2 % w/w cholesterol and 1% w/w sodium cholate and 2.5 % w/w coconut oil) to healthy rats for five days. Rats were divided into four groups containing six animals each; Group1 received normal diet (normal); group 2 received high cholesterol diet (control); group 3 received ezetimibe 3 mg/kg, p.o. and group 4 received Vitamin E 60 mg/kg, p.o. for 6 days. At the end of the 5th day, food was withdrawn and on the 7th day, fasting blood samples were collected by retro-orbital puncture technique in a coagulant free vessel and were kept at room temperature for 1 h. Samples were centrifuged at 4000-5000 rpm to separate serum, that was subjected for the estimation of lipid profile [2] viz., total cholesterol (TC), TG, LDL-C, HDL-C, atherogenic index (AI).

VLDL-C + LDL-C

Atherogenic index = -------

HDL-C

Antioxidant enzymes namely malondialdehyde (MDA),[3] superoxide dismutase (SOD),[3] catalase,[3] and reduced glutathione (GSH),[3] were studied in liver homogenate. One g of liver tissue was homogenized with 10 ml Tris-hydrochloride buffer, the homogenate was centrifuged and the supernatant was collected and used for the estimation of antioxidant enzymes. All data are presented as mean±SEM. To investigate the relationship among the groups, one-way ANOVA followed by Tukey's multiple range test, was performed using Sigmastat 2.03 software. Correlations were considered significant only when P was less than 0.05.

High cholesterol diet caused a significant increase in serum TC, LDL-C, VLDL-C, TG and AI, with a significant decrease in the HDL-C and HDL/LDL ratio. [Table - 1] Ezetimibe pretreatment showed significant decrease in TC, LDL-C and AI, with insignificant increase in the HDL-C and HDL/LDL ratio, as compared to the control group, whereas the Vitamin E treated group showed a significant decrease in TG, VLDL-C and the atherogenic index, with no significant alteration in LDL-C, TC, HDL-C and the HDL/LDL ratio, as compared to control group. [Table - 1] Further, the antioxidant parameters measured in the liver homogenates were in terms of lipid peroxidation (MDA), superoxide dismutase (SOD) and catalase (CAT) and reduced glutathione (GSH). A high cholesterol diet produced insignificant increase in MDA, significant rise in SOD and insignificant decrease in CAT levels. [Table - 2] Ezetimibe treatment produced a significant decrease in SOD and increase in CAT activity, along with insignificant decrease in MDA and GSH levels. Vitamin E treatment showed significant decrease in MDA and SOD, but did not show any marked change in GSH and CAT activity. [Table - 2]

Hypercholesterolemia is a significant risk factor for the development of coronary heart disease, which is a leading cause of mortality and morbidity in many countries. In the present study, ezetimibe at the dose of 3 mg/kg orally in rats, prevented hypercholesterolemia (70%), when compared with serum cholesterol levels in rats receiving high cholesterol diet. It has further shown reduction in VLDL-C as well as TG levels to the tune of 8%, albeit statistically not being significant. Van heek, et al (1997) have also reported attenuation of hypercholesterolemia in atherogenic rats. They attributed attenuation of hypercholesterolemia to LDL-C reduction. In addition, an indirect increase in cholesterol synthesis after multiple dosing of this class of cholesterol absorption inhibitors is quite likely, since an increase in hepatic HMG Co-A reductase activity has been reported after chronic treatment of ezetimibe.[4]

Vitamin E at 60 mg/kg dose orally, showed reduction in serum cholesterol content in rats, that was mainly due to decrease in VLDL and LDL levels. It thus reduced the atherogenic index, which was 70%, as compared to respective control group. These findings are quite similar with the reports of Paul et al, .[5] Measurement of MDA gives an indirect evidence of LDL oxidation. The increase in SOD activity in the control group observed by us, may be due to adaptive mechanism to oxidative stress. It has been reported that oxidative stress increases SOD production.[6] Further, increase in MDA content might be due to increase in lipid peroxidation. The decrease in catalase can be due to overproduction of superoxide anion, which inactivates catalase by converting the resting ferric enzyme to the poorly active ferro-oxy form.

In the present study, Vitamin E treatment showed significant decrease in both MDA and SOD levels. Ezetimibe treatment showed an insignificant decrease in MDA and a significant decrease in SOD level. This suggests that ezetimibe reduces oxidative stress, thereby prevents the generation of free radical and finally inhibits development of atherosclerosis.

It can thus be concluded from this study, that ezetimibe reduces the cholesterol level with a significant increase in antioxidant activity, as evident from significant reduction in LDL-C parameter.


  Acknowledgment Top


We are thankful to Alembic Pharma. Ltd. Vadodara, India, for providing gift sample of ezetimibe[7].

 
  References Top

1.Kosoglou T, Meyer I, Musiol B. Pharmacodynamic interactions between the new selective cholesterol absorption inhibitor ezetimibe and simvastatin. Atherosclerosis 2000;151:135.  Back to cited text no. 1    
2.Allain CA, Poon LS, Ghan CSG, Richmond W. Enzymatic determination of total serum cholesterol. Clin Chem 1974;20:470.  Back to cited text no. 2    
3.Venkatraman JT, Angkeow P, Satsangi N, Fernandes G. Effects of dietary n-6 and n-3 lipids on antioxidant defense system in livers of exercised rats. J Am Coll Nutr 1998;17:586-94.  Back to cited text no. 3  [PUBMED]  [FULLTEXT]
4.Davis HR, Pula K, Alto KB, Burrier RE, Watkins RW. The synergistic hypocholesterolemic activity of the potent cholesterol absorption inhibitor ezetimibe in combination with HMG CoA reductase inhibitors in dogs. Metabolism 2001;50: 1234-41.  Back to cited text no. 4    
5.Paul J, Bai NJ, Devi GL. Effect of vitamin E on lipid components of atherogenic rats. Int J Vitam Nutr Res 1989;59:35-9.  Back to cited text no. 5  [PUBMED]  
6.Mohamedain MM, Hiroshige K, Fred AK. Effect of cholesterol-rich diets with and without added vitamins E and C on the severity of atherosclerosis in rabbits. The Am J Cli Nutr 1997;66:1240-9.  Back to cited text no. 6    
7.Schull S, Heintz NH, Periasamy M. Differential regulation of antioxidant enzymes in response to oxidants. J Biol Chem 1991;266:24398-403.  Back to cited text no. 7    


    Tables

[Table - 1], [Table - 2]

This article has been cited by
1 Effect of soybean oil on atherogenic metabolic risks associated with estrogen deficiency in ovariectomized rats : Dietary soybean oil modulate atherogenic risks in overiectomized rats
Hanaa A. Hassan, Mosaad A. Abdel-Wahhab
Journal of Physiology and Biochemistry. 2011;
[VIEW] | [DOI]
2 Dietary Olive Oil Effect on the Histopathological Alterations Caused by Mixture of Saturated Fats in Both Aorta and Liver of Rat
M. AL-Rawi, A. Ali
Asian Journal of Clinical Nutrition. 2011; 3(2): 53
[VIEW] | [DOI]
3 Antihyperlipidemic Activity of Gymenma sylvestre R. Br. Leaf Extract on Rats Fed with High Cholesterol Diet
P.R. Rachh, M.R. Rachh, N.R. Ghadiya, D.C. Modi, K.P. Modi, N.M. Patel, M.T. Rupareliya
International Journal of Pharmacology. 2010; 6(2): 138-141
[Pubmed] | [DOI]
4 Hypolipidemic Effects of Coenzyme Q10 in Experimentally Induced Hypercholesterolemic Model in Female Rats
A. Al-Attar
American Journal of Pharmacology and Toxicology. 2010; 5(1): 14
[Pubmed] | [DOI]
5 Hypolipidemic effects of coenzyme Q10 in experimentally induced hypercholesterolemic model in female rats
Al-Attar, A.M.
American Journal of Pharmacology and Toxicology. 2010; 5(1): 14-23
[Pubmed]
6 Potential of ezetimibe in memory deficits associated with dementia of Alzheimer′s type in mice
Dalla, Y., Singh, N., Jaggi, A.S., Singh, D., Ghulati, P.
Indian Journal of Pharmacology. 2009; 41(6): 262-267
[Pubmed]
7 An improved and scalable process for the synthesis of ezetimibe: An antihypercholesterolemia drug
Sasikala, C.H.V.A., Padi, P.R., Sunkara, V., Ramayya, P., Dubey, P.K., Uppala, V.B.R., Praveen, C.
Organic Process Research and Development. 2009; 13(5): 907-910
[Pubmed]
8 Aspirin restores normal baroreflex function in hypercholesterolemic rats by its antioxidative action
Tauseef, M., Sharma, K.K.,Fahim, M.
European Journal of Pharmacology. 2007; 556(1-3): 136-143
[Pubmed]
9 Aspirin restores normal baroreflex function in hypercholesterolemic rats by its antioxidative action
Mohammad Tauseef,Krishna K. Sharma,Mohammad Fahim
European Journal of Pharmacology. 2007; 556(1-3): 136
[Pubmed] | [DOI]



 

Top
Print this article  Email this article

    

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer
Online since 20th July '04
Published by Wolters Kluwer - Medknow